

Virginia Sea Grant Program

Research Division
Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061

PROPERTIES OF OCEANIC MANGANESE NODUIE FIELDS
 RELEVANT TO A REMOTE ACOUSTICAL SENSING SYSTEM

by
Kenneth David Smith
VPI-SG-81-13
VPI-Aero-123

May 1981

This work is a result of research sponsored by NOAA Office of Sea Grant, Department of Commerce, under Grant No. NA81AA-D-00025 and the Virginia Sea Grant Program through Project No. R/OE-1. The U. S. Government is authorized to produce and distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon.

ACKNOWLEDGMENTS

Special thanks go to wy conaittee chairman, Dr. K. Sunakvist, for his belp and guidance during the course of this research, end for ais wany helpiul suggestions in preparation of this puolication. Thanks are also aue to pr. A. H. Magnuson and Dre D. Fooney for their suggestlons and. various contributions to this work.

TAELE OP CONTEMTS
A CKNOKLEDGMENTS ii1
LIST OP PIGURES AND TABLES vil
LIST OP SYABOLS vili
Chapter page
I. INTRODUCTION 1
II. gasis of the sea grant proposal 13
III. acoustic scattering prom manganese nodoles 18
Single Scatterer Analysis 19
Multiple Scattering analysis 26
Purther Examination of Various terms 35
IV. acuustical measorements of hanganese nodules 39
acoustical Neasurements and Procedures 40
Discussion of Results 46
Purther Investigation 4
V. SIZE DISThIEOTIONS IN MANGANESE NODULE FIELDS 34
Data Reduction د
Size Distribution Statistics 20
Discussion of Hesults 64
Further Investigation $0:$
VI. SPatial distributions in hanganese nodule fields 42
Data Reduction 94
Calculations 90
Discussion of Results 99
Further Investigation 101
vil. Sumary of conclusions 115
Appendix page
h. acuostical pgoferties of manganese modules 109

$$
\begin{aligned}
& \text { B. DATA SODRCES LIST AND DATA FOR SIZE DISTRIDUTION }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { DATA POR SPATIAL DISTRIBUTIONS IN MAEGANESE GODOLE } \\
\text { FIELDS }
\end{array} \\
& 124
\end{aligned}
$$

5. Scittering Strength vis. Prequency for Singe $\quad 17$
6. Spherical Coordinate Systera for Single Scatterer 37
Cooramate Systea for Multaple Scatteriag andy yis 38
3. Schematic of Wave Speed Measurement Apparatus b 19. -sources. 08 - 89
Nondmensional Size Distridution Curve fit for Combined jata Sources 1a, 2,4, and 9 . . . 90
32. Nonamensionai Size Distribution Curve fit ror Combiled Data Sources $3,4,5,6$, and 7 . 91
33. Fadial Distribution Æastogran for Data source 1 103
34. Kadial Dastripution Histograr for Data source 2 104TABLEAcoustical Properties of Baganese Noqules50

```
\begin{tabular}{|c|c|}
\hline a & nodule radius \\
\hline \(a^{\text {n }}\) & average of the nth power of the radius \\
\hline \(\bar{a}^{n}\) & nth power of the average radius \\
\hline b & Rayleign parameter \\
\hline c & waye speed \\
\hline \(C_{\text {L }}\) or \(C_{0}\) & longitudinal wave speed \\
\hline \(c_{r}\) & transverse vave speed \\
\hline d & distance through nodule specimen \\
\hline E & modulus of elasticity \\
\hline \(\pm\left(\mathrm{r}, \mathrm{r}_{\mathrm{i}}\right)\) & wave propagation function \\
\hline \(\pm(\mathrm{R})\) & radial distribution function \\
\hline G & shear modulus of elasticity \\
\hline \(\underline{g}\left(s_{i}, \omega\right)\) & scattering strength function \\
\hline \(\bar{\square}\) & size averaged scattering strength \\
\hline \[
\dot{a}_{n}^{(2)}(k r)
\] & spherical Hankel function \\
\hline \(I_{0}\) & incident wave intensity \\
\hline \(\mathrm{I}_{s}\) & scattered wave intensity \\
\hline \({ }^{j}{ }_{n}\) & sphericai Eessed function \\
\hline k & wavenumber, w/C \\
\hline \(\mathrm{M}_{\mathrm{W}}\) & wet nodule aras \\
\hline Ma & dry nodule mass \\
\hline N & total number of nodules \\
\hline \(\mathrm{n}_{1}\) & number of nodules 2 n interval 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(n\) & Neusann tunction \\
\hline P & total pressure \\
\hline \(P_{a}\) & incident pressure amplitude \\
\hline \({ }^{P}\) I & incident pressure \\
\hline \({ }^{D_{S}}\) & scattered pressure \\
\hline \(\mathrm{P}_{\mathrm{n}}(\cos \theta)\) & Legendre polynomial \\
\hline <p> & confiqurational average of \(p\) \\
\hline \[
p^{1}\left(r_{1}\right)
\] & external pressure field to scatterer 1 \\
\hline Q() or \(\mathrm{OP}^{(1)}\) & probability functions \\
\hline I & vectorial radius \\
\hline 5 & scattering parameter \\
\hline \(t\) & tıme \\
\hline V & volume \\
\hline \[
Y_{m, n}(\theta, \psi)
\] & spherical harmonic \\
\hline \(Y\) & nodule porosity \\
\hline \(\Gamma(v)\) & Ganma function \\
\hline \(\theta . \psi\) & coordinate angles \\
\hline pe & elastic material density \\
\hline \(\rho_{0}\) & fluid medius density \\
\hline \(\rho_{d}\) & dry nodule density \\
\hline \(\rho_{\text {w }}\) & wet nodule density \\
\hline \(\rho_{\mathrm{sm}}\) & solid material density \\
\hline \(\hat{p}\) & nodule number density \\
\hline a & scattering cross section \\
\hline \({ }^{\text {W }}\) & incident wave frequency \\
\hline
\end{tabular}

\section*{Chapter I}

\section*{INTRODUCTION}

The mining of anganese nodules from the ocean floors has recently become economically competitive with land minang operations because of newly deveioped deep sea mining techniques and equipment. Principal metals which may be recovered from the nodules are copper, cobalt, and nickel (though several other desirable elements are present and recoverable in smaller amounts).

Vast areas of the ocean floors must be surveyed and cataloged witn the goal of isolating potential mining sites. These sites must contain a sufficient abundance of nodules for economic gain, and the nodules must conform to certann size liaitations imposed by the type of maing equipment used. For areas in which these goals are met, further evaiuation of the site as a mining resource may then be requarea by way of grab samples or box coles for deteraining nodule assay (inineral content).

An ongoing Noha Sea Grant project begun in March of 1980 at VPIESU in Elacksburg, Virginia is concerned with speeding up, and therefore lowerang the cost of, the initial prospecting operation (which at present is painfuily siow and expensive], througn the developsent of a remote acoustic sensing systen. This thesis results from the examanation of
acoustical properties of ranganese noduies and some physicat characteristics of nodule fields fize distributions and spatial configurations) performed in support of the Sea Grant project. Specifically, longitudinal and transverse wave speeds were measured through typical pacific and Atlantic ocean manganese Dodules. A function representing the distributions of nodule floor plane, cross-sectional areds in several nodule theids was determined. Transforms were developed from that areal distribution function to relate the averages of radii to various powers. Spatial distributions were treated only superficially and several generallzed observations noted.

Presently, in situ inspection is the only way to detertine if a particular botton site contalns a sufficiently nigh areal weight density (weight of nodules per unit bottom area) and meets the size ilmitations necessary for mining operations. A deep tow sled wust be lowered two to three miles to the ocean tloor carryaug equipinent that can examine the ocean bed. Such equipment mignt include lights and caneras (McParland 1980) for a photoyraphic recording or side-scan sonar (Speiss 1980) for an acoustic image recording. Lights and cameras eust be close to the botion (within about 10 meters) 10 oraer to ailow illumpation of the bothom and resolution of
\(\begin{array}{llll}\text { individual moduie outlites. } & \text { Side-scan sonar utilizes } \\ \text { ultrasonic frequencies (looknz and higher) to obtaln }\end{array}\) detailed pictures of nodule sites with high resolution. However, over láge distances severe attenuation of such hign frequency signals becomes a liniting deploynent factor, requiring that the ultrasonic sonrce and Ieceiver be located close to the ocean bottom also (withan 50 meters or so). The survey ship must row the equipnent sled at a very slow speed to ensure that the sled remains at a stable atritude and neight above the ocean fiour. The agnitude of this problem \(1 s\) more readily apprechated when one considers the enormous lengths of cable required to reach from ship to sled. Other factors contributing to the currently slow surveying probieq are the time consuming equipment lowering from surface to bottom (add tbe subsequent raising), and the inaccessibility of the equipment for possible manntenance or quicx-fux procedures.

The dining companies can usually determine by visual Inspection of the photographrc or acoustic anages wnether or not a nooule site contains sufficient areal weight density. In sone cases of marginal anundance, pnotographic analysis may berequirfd to determine more dractly the areal weaght density, since the mining conpanies will certainip hape some cut-oif limit in mind for a profit magine The lant rould
vary with current ore market prices but Frazer (1977) has indicated an average weight density of at least \(10 \mathrm{~kg} / \mathrm{m}^{2}\). dependert upon the local nodule assay. photographic analysis may be guite a tine-consuming procedure depending upon the degree of accuracy required. McParland (1980) has presented nore information on photographic analysis methods and some recentiy proposed improvements.

The undesirable aspects associated with present prospecting techniques are summarized below:
1) Excessively Low surveying (toving) speeds.
2) Tine consuming equipment drops.
3) Inaccessible equipment packages.
4) Possibly time-consuuing photo analysis for marginal areal weight density sutes.
one approach to remedy these problens attempts to correlate nodule abundance to the bottom transparent layer thickness (Dottop sedimentary layer thickness) (Mizuno 1976). This idea arose from weak correlations between the two variables noticed in seismac reflection records. More recently however, negative results have been andicated in high nodule abundance areas (Moritani 1979). The correlation does not appear to be consistent enough or quantitative enough to adopt as a surveying technique.

Indect, prospecting processes available at present are very time consuming and costiy. An aiternative prospecting method is therefore desirable. The remote acoustic sensing systen mentioned aoove is outinned in a sea grant proposal entitied Acoustic Sounding for Manganese Nodules (Hagnuson and sundkvist 1979). "Eemote" here implies a systea operating from on or just beneath the water surface, eliminating the two to three mie equipment drop ro the ocean floor. The system aaraware, nounted on a "fish" towed behind a surveying vessel, would allow such higher surveying speeds (Figure 1). The system would send an acoustic palse down to the ocean floor and receive the return signal as is commoniq done in depth sounding work. Unlike depth sounding however, the return signal's pulse shape and variation wita output frequency must be analyzed in order to determine what has been encountered by the incident signal at the ocean floor. Specifically, are nodules present in the insonified area? If so, what is the areai weight density and the averaye nodule size?

The second chapter exarines the proposal's operationai aspects which aliow for the revote sensing for manganese nodules. It \(2 s\) sufficient to say nere that it is tne frequency defendence of the scattered return signal from the nodules that \(1 s\) the key to the success of the project. To
be able to infer information about the presence of nodules frow this returned signal, one must be equipped with an extensive knowledge of the interaction of the incident acoustic wave with the nodules on the ocean botton. The analytıcal tools required to interpret the return signals have been (and are beang) deveioped by other investigators, and the wajor points of their acoustical scattering analyses are presented in Chapter III.

The basic conponents of the physical system are the nodules, the sediment on which they rest, and the acoustic plane wave which is directed at both of the former. It is assumed that there is no acoustic interaction between the sedipent and the nodules (see Pigures \(2 E 3\) ). That is, the total scattered field equals the scattered field from the nodules plus the reflected field from the sedinent (if any). (The sediment-nodule interaction ay be taken into account at a later date but its consideration is not varranted at this anitial level of analysis.) Heflection from a flat plane is ratner elementary: the =eflected acoustic intensity is proportional to the incident intensity by a reflection coefticient which is independent of frequency. In fact, the acousticaily transparent sediment layer on which the nodules are tppically tound will give only a very weak respoase. The difficalty arises in relating the scattered fueld to nodule size and abundance.

Chapter III begins witn the analysis of an individual nodule insonified by a plane wave. The generai probleq is posed as an elastic sphere surrounded by liquid and solutions are obtained in terns of acoustical pressures. In particular, the scattered wave pressure is sought as a function of incident pressure amplitude and frequency, nodule radius, and nodule density and wave speeds. a measure of the scattering capability of a nodule is presented by way of the scatering cross section function. This analysis requires a quantitative knowledge of the acoustical veiocities in manganese nodules both conpressional and shear wave speeds) and of the wet density of manganese noduies. Measurement of the wave speeds (not now found in the iiterature) is described in chapter IV. Chemical and pnysical properties of sanganese nodules are found in various sources (G\&adsby 1977, Greenslate 1977).

The response of many nodules insonified together is examined next. We may eitaer assume that each nodule of solie larye group acts independently fand the total response is the sumation of each individuai nodule response to the incident wave). or that there \(1 s\) an acoustic interaction between the nodules (in wich case the total response is not simgly the sumation of naividual nodule responses). The former case 2 s a valig approximation of sparsely distributed
fields fhere the nodules are separatea by many average nodule dzameters. However, for closely packed nodule distributions, the second, more general case for acoustic interaction wst be considered. Both cases are studied.

The multiple scattering anaiyses require knowledge of the nodule field size distributions. Size distribution" can ean any of the group of distrabutions actualiy sought the radins, rauius squared, and radius cubed distributions (in general. the radius to any power distribution may be required) . Size distributions vere obtained by studying nodule cross-sectional area distributions of nodule tields fron ocean floor photographs. an analysis of size distributions in manganese noduiefieids is contained in Chapter \(V\).

Por densely packed systems, we mut make use of spatial or radial distributions, i.e., a measure of the distances separating nodules. Consideration of the spatial distribution accounts for the effect on the scattered field from a dodule because of the proximity of its nelghbors. Spatial distributions are only briefly exanined \(1 n\) chapter VI. Utilization of information obtained fron then is linited in this report, becanse the theory has not been sufficiently developed at this tine.

The physical characteristics of nodules and nodule fields required for use in the theoretical analyses and of aajor concern to this thesis then, are:
1) Longltudinal (compresszonal) and transverse (shear) wave speeds in the nodules (required at all levels of analysis).
2) Area distribution functions (required for the altiple scattering analyses).
3) Spatial distribution functions (required for the multiple scattering anaiysis of densely packed nodule fieids).


Figure 1. Proposed Prospecting System


Figure 2. Photograph of Typical Manqanese Nodule Field in Pacific (Courtesy of Deepsea Ventures, Inc.)
SCATTERED WAVE
Figure 3. Simplified Nodule - Sediment Interaction


\section*{BASIS OF TRE SEA GRANT PROPOSAL}

Derpsea Ventures, Inc. (fioucester fornt, Va.) has verdally reported on the results of using their pads finite APplitude Depth Sounding) system with a CESP (Correlation Echo Sounding Processor) unit, both of which are products of Raytheon, over ocean floors uith and without manganese nodules. Soft ocean bottons containing manganese nodules caused an increase in the return signal strength compared to soft bot tons without noales. But they vere unaple to distinquisn betwefn a soft ocean botton with nodules and a hara ocean botton yithout nodules, both of which returned increased signal strengths. If, however, an analysis of the frequency dependence of the return signal had been performed, the difference 1 n the signais might weri have been determined. (The above by private comauacation wita W. Siapno, Director of Marine Science, Deepsea Ventures Inc., in Gloucester Point, Va-)

In general, the acoustic response to an incident plane wave on a field of scatterers will approach the shape of one of the curves in pigure 4 . The strengta of tae retura for a given average scatterer radius a) is indicated by position along the ordinate (verticaf) axis while the uncowing acoustic signal frequency \(u\) varies along the abscissa
(horizontal) axis. The acoustic signature of some scatterer may be ploted on these axes. por Rayleigh scattering (incoming wavelength large compared to nodule radius), the response exhibits a frequency to the fourth power dependence. For geonetrical scattering (incoming vavelength smail compared to nodule radius). the response is more or less frequency independent. We will term the frequency where the response changes from Rayleign scattering to geonetrical scattering as the break frequency. The resutt of increasing the average nodule diageter 1 n the field, but maintaining a constant nodule concentration, shifts the curve and tae break polnt to the left (Figure 4a). The result of increasing the nodule concentration for a fixed aperage diameter is an elevation of the signature (Pigure 4b) .

These relations are the basis of this sea Grant project. The steps for determinang nodule site information from the operational point of view might be:
1) Locate rounded scatterers on tne ocean botton by the low frequency dependence.
2) Deteraine average scatterer diameter by the break frequency.
3) Determine the nueder density (number per unit area) of the nodules by tne streagtn of signal or break levé.
4) Calcuiate areal weight density from number density and size averaged indipidual scattering cross sections.


a. VARIATION WITH MEAN NODULE DIAMETER FOR DEPOSITS WITH SAME NUMBER DENSITY

b. VARIATION WITH NUMBER DENSITY FOR FIXED MEAN DIAMETER OF NODULES

Figure 4. Acoustic Signature Trends for Nodule Deposits


Figure 5. Scattering Strength vs. Frequency for Single Nodule

\section*{Chapter III}

\section*{ACOUSTIC SCATTERING PROM hanganese nodules}

Throughout the analytical work outlined in this chapter the nodules are apprommated as elastic spheres. The spherical essumption is better for atlantic nodules but not as good for Pacific nodules which are sonevhat flattened in the vertical direction. Pacific nodules may at Dest be described as oblate spheroids. It may be found in rurther investigations that a shape correction factor is requirea, but no consideration is given to a corfection factor in thas 'first look' stuay.

In general, an elastic nedius supports one compressiunal wave speed of propaqation and one shear wave speed of propagation in response to acoustical perturbations. The nodules are actually porous spneres for Which theory predicts two compressionat wave speeds and one shear wave speed to exist. During tests on the nodules, only one compressional wave speed vas observed, so the elastic approximation is used.

Scattering analysis applications vere investigated by other researcners working on this Sea Grant project at VPIESU. The reader is referred to Ma (1981), and to Magnuson et al. (1981) for more detazied presentations of the fuilowimy analyses.

\begin{abstract}
The response of a single elastic scateref to an incident plane wave \(1 s\) consıdered first. scattering cross section is defined and an expression obtained for the lou frequency case where ka<<i. Experimentaliy determined numerical values are substituted into the scattering cross section exprossion. The multiple scattering problet is then addressed (considering botb sparsely packed and denseiy packed nodule fielas). Lastly, a simplified form of the scattering solution 15 exanined to shou the application of size distributions and wave speed measurements.
\end{abstract}

\subsection*{3.1 SINGLE SCATTERER AHALYSIS}

The total pressure field for an individual scatterer is made up of the incident plane wave pressure \(P_{I}\) and the outgoing scattered wave pressure \(p_{s}\). Writing expressions for these vressures requires knowledge of the general solution to the linearized acoustic wave equation in spherical coordinates and consideration of the boundary conditions.

The Iinearized acoustic wave equat 20 as
\[
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) p=0 \tag{1}
\end{equation*}
\]
where \(p\) is the perturbation pressure and \(k\) is the wavenumber \(\omega / C\) (frequency divided by vave speed). The general solution to equation (1) is
\[
P=\sum_{n, m=0}^{\infty} P_{m, n} Y_{m, n}(\theta, \psi)\left[\begin{array}{l}
j_{n}(k r)  \tag{2}\\
n_{n}(k r)
\end{array}\right]
\]
where \(Y_{m, n}(\theta, \psi)\) is a spherical harmonic, \(f_{n}(k r)\) and \(n_{n}(k r)\) are a spherical Bessel function and à Neumann function respectively, and \(\theta, \psi\), and rare indicated in Figure 6. There is no \(\psi\) dependence in our problen because of sympetry. Equation (2) may be appiied to the incident plane vave. Which is actually given by
\[
\begin{equation*}
p_{I}=p_{a} e^{i k r \cos \theta} \tag{3}
\end{equation*}
\]
yieiding the following simplified result:
\[
\begin{equation*}
p_{I}=p_{a} \sum_{n=0}^{\infty}(2 n+I) i^{n} j_{n}(k r) p_{n}(\cos \theta) \tag{4}
\end{equation*}
\]

Where \(p_{a}\) is the incident pressure amplitude and \(p_{n}(\cos \theta)\) is a Legendre polynomial.

Application of equation (2) to the outgoing scattered vave gives
\[
\begin{equation*}
P_{s}=\sum_{n=0}^{\infty} B_{n} h_{n}^{(2)}(k r) p_{n}(\cos \theta) \tag{5}
\end{equation*}
\]
where \(h_{n}{ }^{(2)}(k r)\) is a spherical Hankel function, dad \(B_{n}\) most be evaiuated by the boundary conditions.

The boundary conditions reqiure an acoustical wave match at the interface between the scatterer's interior compressioual and shear elastic wave soiutions and the exterior compressional wave of the surrounding flund mediun. Physically, the match is achieved by applying continaity of stresses and contanumty of normal and tangential displacementis at the interface. It is found oy ma (1981) that
\[
\begin{equation*}
B_{n}=\frac{1}{1+1 C_{n}} p_{a}(2 n+1) i^{n} \tag{6}
\end{equation*}
\]
where
\[
\begin{align*}
& C_{n}=\frac{n_{n 1} D_{n}-g \frac{x_{1}}{x_{3}{ }^{2} n_{n 1}^{\prime} E_{n}}}{-j_{n 1} D_{n}+g \frac{x_{1}}{x_{3}{ }^{2}} j_{n 1}^{\prime} E_{n}}  \tag{7}\\
& D_{n}=2 n(n+1)\left(1-\frac{j_{n 2}}{x_{2} j_{n 2}}\right)-\frac{x_{3}{ }^{2 j_{n 3}^{\prime \prime}}}{j_{n 3}}-\left(n^{2}+n-2\right) \\
& E_{n}=4 n(n+1)\left(1-\frac{j_{n 2}}{x_{2} j_{n 2}}\right)\left(1-\frac{x_{3} j_{n 3}^{\prime}}{j_{n 3}}\right) \\
& -2 x_{2}\left\{\left(\frac{x_{3}{ }^{2} j_{n 3}^{\prime \prime}}{j_{n 3}}+n^{2} n-2\right)\left[\left(\frac{1}{2 h_{3}{ }^{2}}-1\right) \frac{j_{n 2}^{1}}{j_{n 2}}-\frac{j_{n 2}^{\prime \prime}}{j_{n 2}^{\prime}}\right]\right\} \\
& x_{1}=k a \\
& x_{2}=k_{L}^{a}
\end{align*}
\]
\[
\begin{aligned}
& x_{3}=k_{T} a^{2} \\
& g=\rho_{\mathrm{e}} / \rho_{0} \\
& h_{3}=C_{T} / C_{L}
\end{aligned}
\]

The subscripts 3 , 2 , or 3 on the spherical Eessel and Neunan functions refer to tide argunent of the function so that \(j_{n i}\) denotes \(j_{n}\left(x_{i}\right)\) and similarly for \(n_{n f}\). The superscript \({ }^{\prime}\) refers to the derivatave vith respect to the argument. \(k\) is the surrounding fluid wave nunber \(w / C_{0}\) and \(k_{L}\) and \(k_{T}\) are the scatterer's longitudinal and transverse vave nuabers, w/C and \(w C_{T}\) respectively. The surrounding medium density is given by \(\rho_{0}\) and the elastac aedium density by \(\rho_{e}\).

The scattered pressure \(p_{s}\) may then be uritten as
\[
\begin{equation*}
P_{s}=\sum_{n=0}^{\infty} \frac{1}{1+i C_{n}} p_{a}(2 n+1) i^{n} h_{n}^{(2)}(k r) p_{n}(\cos \theta) \tag{8}
\end{equation*}
\]

Por the far fieid solution (kr>>1), \(h_{n}(2)\) (kr) may be replaced as follows:
\[
\begin{equation*}
h_{n}^{(2)}\left(k_{r}\right)=\frac{1}{k r} e^{-i[k r-(n+1) T / 2]} \tag{9}
\end{equation*}
\]

We may then write the scattered pressure as
\[
\begin{equation*}
P_{s}=\left\{\sum_{n=0}^{\infty} \frac{1}{1+i C_{n}}(2 n+1) 1^{n} P_{n}(\cos \theta) e^{f(n+1) \pi / 2}\right\} P_{a} \frac{e^{-i k r}}{k r} \tag{10}
\end{equation*}
\]
where \(e^{-i k r}\) is the scatterlng paase. This result is obtained in a more rigorous manner by ma (1981).

We see that the scatter pressure fron one nodule may be writren \(2 n\) terms of an inïinite sum;
\[
\begin{equation*}
p_{S}=\sum p_{s i} \tag{11}
\end{equation*}
\]

At present, there is prinary interest in the Rapleigh scattering region (that \(2 s\), wher ka, wave nusber tipes nodule radius, is swall) for there ls a sinple frequency dependence expected here. Por ka<<i.
\[
\begin{equation*}
P_{s}=\left(P_{s}\right)_{0}+\left(p_{s}\right)_{1}+\text { higher order terms } \tag{12}
\end{equation*}
\]

The first two terms on the right hand side of equation (12) are respectively, the monopole and the dipole terus and they correspond to \(n=0\) a ad \(n=1\) in equation (10). Opon evaluatiag \(C_{n}\) for several values of \(n\), it \(1 s\) found tiat the monopole and dipole teris both are of order a(ka) \({ }^{2}\) wile the \({ }^{\text {anigher }}\) order terms are of order a(ka) \({ }^{4}\) and may be neglected.

The scatter pressure from an individual scatterer in the Rayteigh region (ka<<1) is found to be (Ha 1981).
\[
\begin{equation*}
p_{S}=a(k a)^{2}\left[\frac{e-\frac{1}{1-4 / 3 h_{3}^{2}}}{3 e}+\cos \theta \frac{g-1}{2 g+1}\right] p_{a} \frac{e^{-i k r}}{r} \tag{13}
\end{equation*}
\]
where
\[
\begin{gathered}
e=g C_{L}^{2} \cdot C_{1\}}^{2} \\
g=D_{T} \\
h_{3}=C_{L}
\end{gathered}
\]

The subscripts \(T, L\), and e refer to the elastic solid, and subscript o refers to the surrounding fluid mediun. The first ter in brackets in equation (13) is the monopole term and tne second term is the dipole tera. The dipole term is a function of the scattering angle \(\theta\). Positive \(\theta\) is measured from the line connecting the incldent pressure wave source vith the scatterer to the line connecting the scatterer with the point at which \(p_{s}\) is sougbt.

The scattering cross section \(\sigma\) is a measure of the scattering capability of an object. It is defined as tne ratio of the scattered intensity to the incident antensity and measured at sone distance \(r\) fron the scattering source point:
\[
\begin{equation*}
\sigma=\frac{I_{s}}{I_{0}} r^{2} \tag{14}
\end{equation*}
\]

The intensities \(I_{s}\) and \(I_{o}\) are reated to the pressures \(P_{s}\) and \(p_{a} b_{y}\)
\[
\begin{align*}
& I_{0}=\frac{p_{a}^{2}}{p_{0} C_{0}}  \tag{15a}\\
& I_{s}=\frac{p_{s}^{2}}{p_{0} C_{0}} \tag{15b}
\end{align*}
\]

Thus, for \(r\) equal to 1 neter the commonly used point of reference for \(\sigma\) ).
\[
\begin{equation*}
\sigma=\left|\mathrm{P}_{\mathrm{s}} / \mathrm{P}_{\mathrm{a}}\right|^{2} \tag{16}
\end{equation*}
\]
and bas the dimensions of an area.

The scattering cross section tor a single elastic sphere with kar<1 is
\[
\begin{equation*}
\sigma=a^{2}(k a)^{4}\left[\frac{e-\frac{1}{1-4 / 3 h_{3}^{2}}}{3 e}+\cos \theta \frac{g-1}{2 g+1}\right] 2 \tag{17}
\end{equation*}
\]

This expression may be conpared with an expression of the scattering cross section for a single fluid sphere with ka<<1, attributed to Rayleigh himself (Ciay and Bedwin 1977). given by
\[
\begin{equation*}
\sigma=a^{2}(k a)^{4}\left[\frac{e^{-1}}{3 e}+\cos \theta \frac{g-1}{2 g+1}\right]^{2} \tag{i8}
\end{equation*}
\]

Where the first term in brackets is the monopole term and tne second tern is the dipole term. Equations (17) and (18) are of very similar forn. The only difference berween the elastic and tluid expressions is in the monopole tern, and this difference is due to shear wave effects in the elastic sphere the fluid sphere propagates a compressional wave only).

If we take elastic sphere equation (17) and let the shear wave speed go to zero \(\mathrm{h}_{3}\) goes to zero, leaving only the compressional wave as in a fluid sphere), then the adaitional eastic tera in the monopole goes to one:
\[
\begin{equation*}
\frac{1}{1-4 / 3 h_{3}^{2}} \longrightarrow 1 \tag{19}
\end{equation*}
\]

The result is equation (18), the fluid sphere scattering cross section for ka<<1.

Eesults obtained in Chapter IV can be used to evaluate most of the terms in equation (13). Average Pacific nodule deasities and wave speeds are used. Let
\[
\begin{aligned}
& g=1.94 \\
& h_{3}=0.90 \\
& e=4.76
\end{aligned}
\]
and the scattering cross section for an elastic nodule in the Rayleigh range becones
\[
\begin{equation*}
\sigma=\left\{a^{3} k^{2}[(1.21)+\cos \theta(.540)]\right\}^{2} \tag{20a}
\end{equation*}
\]

For convenience, we define \(L(\theta)\) such that
\[
\begin{equation*}
\sigma=\left\{a^{3} k^{2} L(\theta)\right\}^{2} \tag{20b}
\end{equation*}
\]

\subsection*{3.2 UULTIPLE SCATTEELHG ANALYSIS}

The multiple scattering analysis uses a self consistent field approach (Foldy 1945) in examining the total pressure field occurring in the presence of scatterers. The total pressure field \(p(r)\) equals the inciatut acoustical pressure field \(P_{I}(r)\) plus the sum of ali the scattered pressure fieide from each of the scatterers;
\[
\begin{equation*}
p(r)=p_{I}(r)+\sum_{i=1}^{N} p_{s i}(r) \tag{21}
\end{equation*}
\]

The origin of the coorduate system for this case is fired on a plane of scatterers (Pigure 7). The itn scatterer is located at \(r_{1}\) (where \(z_{1}=0\) ) and this scatterer emits a scattered pressure field given by
\[
\begin{equation*}
P_{s i}(r)=g\left(s_{i}, \omega\right) E\left(r, r_{i}\right) p^{i}\left(r_{i}\right) \tag{22}
\end{equation*}
\]
where \(g\left(s_{i}, \omega\right)\) is a function of the incident frequency \(w\) and a scattering parameter \(s\) (wnich may, in general, De related to the nodule radius and nodule acoustical propertues), and \(E\left(r, r_{i}\right)\) is a Greens function that characterizes propagation through the mediun between the scaterer at \(r_{i}\) and the field location at I given by
\[
E\left(r, r_{i}\right)=\frac{e^{i k\left|r-r_{i}\right|}}{\left|r-r_{i}\right|}
\]

Lastiy, \(p_{1}\left(r_{1}\right)\) is the total pressure field external to the ith scatterer.

The externai fieid may be defined
\[
\begin{equation*}
p^{i}\left(r_{i}\right)=p(r)-p_{s i}(r) \tag{23}
\end{equation*}
\]
or in vords, the external field to scatterer i equals every pressure contribution (incident and scattered) to the total field ( \(\mathrm{p}(\mathrm{r})\) ) around 2 minus its own scattered pressure field ( \(\mathrm{p}_{51}(\mathrm{r})\) ). Herein lies the "self consistency" of this afproach. The external field has been defined in terms of the quantity initially being songht - the total pressure field \(p(I)\).

Combining equations (21) and (22), we have
\[
\begin{equation*}
p(r)=p_{I}(r)+\sum_{i=1}^{N} g\left(s_{i}, \omega\right) E\left(r, r_{i}\right) p^{i}\left(r_{i}\right) \tag{24}
\end{equation*}
\]
and combining equations (21), (22), and (23), ve can write
\[
\begin{equation*}
p^{i}\left(r_{i}\right)=p_{I}(r)=\sum_{\substack{j=1 \\ j \neq i}}^{N-1} g\left(s_{j}, \omega\right) E\left(r, r_{j}\right) p^{j}\left(r_{j}\right) \tag{25}
\end{equation*}
\]

Where the same externai fieid term apfears on both sides of the equation, and a similar equation can be vritten for the exteral field of the jth nodule. Equations (24) and (25) may be solved for sone particular configuration of scatterers, out we are interested in quantities that are averaged over ajl possible confiqurations of scatterers since for the general application of this theory to nodule fields, the configuration will be unknown.

The configurational average is defined as
\[
\begin{equation*}
\langle p\rangle=\int_{2 N} p Q\left(r_{1} r_{2} \ldots r_{N}, s_{1} s_{2} \ldots s_{N}\right) d r_{1} d r_{2} \ldots d r_{N} d s_{1} d s_{2} \ldots d s_{N} \tag{26a}
\end{equation*}
\]

Where
\[
\begin{equation*}
Q\left(r_{1} r_{2} \ldots r_{N}, s_{1} s_{2} \ldots s_{N}\right) d r_{1} d r_{2} \ldots d r_{N} d s_{1} d s_{2} \ldots d s_{N} \tag{26b}
\end{equation*}
\]
is the probavility of particular configuration occurring with scatterer locations between \(r_{i}\) and \(d r_{i}\) and corfesponaing scattering parameters between \(s_{i}\) and ds \({ }_{i}\).

For the ith scatterer's position and scattering parameter fixed, tae conditiond configurational average is expressed as
\[
\begin{equation*}
\langle p\rangle_{i}=\int_{2 N-1} p Q\left(r_{1} r_{2} . . r_{N}, s_{1} s_{2} \ldots s_{N} / r_{i}, s_{i}\right) d r_{1} d r_{2} . . d r_{N-1} d s_{1} d s_{2} \ldots d s_{N-1} \tag{27}
\end{equation*}
\]

Osing conditional probabilities, we can rewrite the prodability density function found in equations (26) as
\[
\begin{equation*}
Q\left(r_{1} r_{2} \cdots r_{N}, s_{1} s_{2} \cdots s_{N}\right)=Q_{i}\left(r_{i}, s_{i}\right) Q\left(r_{1} r_{2} \ldots r_{N}, s_{1} s_{2} \cdots s_{N} / r_{i}, s_{i}\right) \tag{28a}
\end{equation*}
\]
or as
\[
\begin{equation*}
Q\left(r_{1} r_{2} \ldots r_{N}, s_{1} s_{2} \ldots s_{N}\right)=Q_{i j}\left(r_{i} r_{j}, s_{i} s_{i}\right) Q\left(r_{1} r_{2}, \ldots r_{N}, s_{1} s_{2} \ldots s_{N} / r_{i} r_{j}, s_{i} s_{j}\right) \tag{28b}
\end{equation*}
\]

Where the daviding slash in the conditional probabilities means the inuicated parameters are fixed.

Taking the configurational average of equation (24) and applying equation (28a) to the resulting probability density, we get equation (29a) shown belov. The ith conditional probability of equation (28a) is contalined \(2 n\) the external pressure field term \(\left\langle p^{i}\left(r_{i}\right)\right\rangle_{i}\). Taking the conditional consigurational average of equation (25) (for the external pressure field average), and expressing the 2 th conditional probability found in equation (28a) in terms of equation (28b), we get equation (29b) where the external pressure field average \(\left\langle p^{j}\left(r_{j}\right)\right\rangle_{i j}\) contanns the ijth conditional probability found in equation (28b).

Reapplyang the configurational average to equation (25) for the external pressure field of each subseguent nodule, a series of \(N\) coupled integral equations results. This series of equations, Known as the Poldy-Lax nierarchy, is given as follows:
\(\langle p(r)\rangle=P_{I}(r)+\sum_{i=1}^{N} \int d r_{i} d s_{i} Q_{i}\left(r_{i}, s_{i}\right) g\left(s_{i}, \omega\right) E\left(r, r_{i}\right)\left\langle p{ }^{i}\left(r_{i}\right)\right\rangle_{i}\)
\(\left\langle p^{i}(r)\right\rangle_{i}=p_{I}(r)+\sum_{j \neq i}^{N-1} \int d r_{j} d s_{j} \frac{Q_{i j}\left(r_{i} r_{j}, s_{i} s_{j}\right)}{Q_{i}\left(r_{i}, s_{i}\right)} g\left(s_{j}, \omega\right) E\left(r_{,} r_{j}\right)\left\langle p^{j}\left(r_{j}\right)\right\rangle_{i j}\)
\(\left\langle p^{j}(r)\right\rangle_{i j}=p_{I}(r)+\)
\[
\begin{equation*}
\sum_{k \neq j}^{N-1} \int d r_{k} d s_{k} \frac{Q_{i j k}\left(r_{i} r_{j} r_{k}, s_{i} s_{j} s_{k}\right)}{Q_{i j}\left(r_{i} r_{j}, s_{i} s_{j}\right)} g\left(s_{k}, w\right) E\left(r, r_{k}\right)<p{ }^{k}\left(r_{k}\right)>_{i j k} \tag{29c}
\end{equation*}
\]
etc.

Successive equations in the hierarchy use hagher order statistics from the scatterer configuration as implied by the increasing explicit conditional probabllities that occur in the external field terms.

The sumation from 1 to \(N\) in equation (29a) simply proquces a multiplier of \(N\) into the integrand. The scatreriny paraneter \(\left(s_{1}\right)\) integration \(i s\) exanined separately
from the radial ( \(r_{f}\) ) integration oper the bottom area. We may define
\[
\begin{equation*}
G\left(r_{i}\right)=\int d r_{i} N Q_{i}\left(r_{i}, s_{i}\right) g\left(s_{i}, w\right) \tag{30}
\end{equation*}
\]

Acoustical properties are assumed to be independent of nodule size. Using average acoustical propertaes, the scattering parameter s may be considered to depend on the nodule size only - The probability function \(q_{1}\left(r_{1}, s_{1}\right) \quad\) is reduced to the fora
\[
\begin{equation*}
Q_{i}\left(r_{i}, s_{i}\right)=E\left(r_{i}\right) \alpha\left(s_{i}\right) \tag{31}
\end{equation*}
\]
for indupenuent size probability distridution a(sf) and locational probebility distribution (expected to be valid except in the case of very densely packed systens for which coupling must be considered - Hong (1980)). The randon Iocational or radial probability distribution \(B\left(r_{i}\right)\) is given by
\[
B\left(r_{2}\right)=\hat{C} / N
\]
and \(\hat{o}\) ls the nusber density foumer of nodules per unit area) of scatterers in the fieid.

So ve see in equation (29) that the size distribution \(\alpha\left(s_{i}\right) \quad\) is tequired for the configurationai average (assusing average materaal properties) . A major part of thas report is concerned vith developing this function fron photographic dati (see Size Distributions in Manganese Nodule Plelds). We also ind in equation (31) that \(g\left(s_{i}, w\right)\) turns out to be the square root of the scattering cross section \(\sqrt{\sigma} \cdot \frac{A n}{}\)
expression for \(\sigma\) is given in the single scattering Analysis, equation (17) .
ge may now write
\[
\begin{align*}
G\left(r_{i}\right) & =N B\left(r_{i}\right) \int d s_{i} x\left(s_{i}\right) g\left(s_{i}, \omega\right)  \tag{32a}\\
& =N \bar{\beta} / N \bar{g} \\
& =\hat{\rho g} \bar{g} \tag{32b}
\end{align*}
\]
where
\[
\begin{equation*}
\bar{g}=\int d s_{i} \alpha\left(s_{i}\right) g\left(s_{i}, \omega\right) \tag{33}
\end{equation*}
\]
and the overdar denotes size averaged quantities. It is noted once again that we have assused average acoustical properties for the field. Equation (29a) becones
\[
\begin{equation*}
\left.\langle p(r)\rangle=p_{I}(r)+\int d r_{i} \hat{p} \bar{g} E\left(r, r_{i}\right)<p^{i}\left(r_{i}\right)\right\rangle{ }_{i} \tag{34a}
\end{equation*}
\]

Bpplying a similar procedure to (29b), it is found that
\[
\begin{equation*}
\left\langle p^{i}\left(r_{i}\right)\right\rangle_{i}=p_{I}\left(r_{i}\right)+\int d r_{j} \hat{\rho} g f(R) E\left(r_{i}, r_{j}\right)\left\langle p^{j}\left(r_{j}\right)\right\rangle_{i j} \tag{34b}
\end{equation*}
\]
where \(R=\left|r_{i}-r_{j}\right|\) and \(f(R)\) is a pair correlated radial distribution function wich gives inforation about the locational relationships between adjacent nodules. kadial distributions are examned in another portion of this report although not treated in an in depth lanner (see Chapter vi). Rof equarion (29b), we define
\[
\begin{equation*}
G\left(r_{j} \mid r_{i}\right)=\int d s_{j} N \frac{Q_{i j}\left(r_{i} r_{j}, s_{i} s_{j}\right)}{Q_{i}\left(r_{i}, s_{i}\right)} g\left(s_{j}, \omega\right) \tag{35}
\end{equation*}
\]
and we can write
\[
\begin{equation*}
\frac{Q_{i j}\left(r_{i} r_{j}, s_{i} s_{j}\right)}{Q_{i}\left(r_{i}, s_{i}\right)}=\frac{q_{i j}\left(r_{i} r_{j}\right) \alpha\left(s_{i}\right) \alpha\left(s_{j}\right)}{\theta\left(r_{i}\right) \alpha\left(s_{i}\right)} \tag{36}
\end{equation*}
\]

Where the radial probability \(q_{f_{t}}\left(r_{1} r_{f}\right)\) can not be broken down further because the location of scatterer 1 with respect to scatterer \(j\) is not independent (for densely packed systems). They are pair correlated. \#k defzne
\[
\begin{equation*}
q_{i j}=\hat{\rho}^{2} / N^{2} f(R) \tag{37}
\end{equation*}
\]
and plugging back into equation (35) we get
\[
\begin{equation*}
G\left(r_{j} \mid r_{i}\right)=\int d s_{j} N \hat{\rho} / N f(R) \alpha\left(s_{j}\right) g\left(s_{j}, \omega\right) \tag{38}
\end{equation*}
\]

By equation (33), we nay write
\[
\begin{equation*}
G\left(r_{j} \mid r_{i}\right)=\hat{\rho f}(R) \bar{g} \tag{39}
\end{equation*}
\]
the right hand side of which occurs in equation (34b). The difference between equations (39) and (32) is due to the locational corielation between pairs of nodules which is represented oy the radial distribution function \(f(B)\). only the first two equations of the foldy-Lax hierarchy, equations (34a) and (34b), have been exatined because under tine proper circunstances, a closure condition Can De introduced so that solving all of the n equations is avoiued. Two sets of circumstances with corresponding closure conditions are considered here for anganese nodule flelds.

Por sparse distributions of scatterers (low number density \(f\) ), it can be assumed that the configuration of scatterers and the average total field are not significantly affected by the location and scattering of the ith scatterer. The ciosure condition approximating this circumstance is
\[
\begin{equation*}
\left\langle p^{i}\left(r_{i}\right)\right\rangle_{i}=\left\langle p\left(r_{i}\right)\right\rangle \tag{40}
\end{equation*}
\]
and only the first equation of the hierarchy, equation (34a), need be solved. Again, this solution is valid only for sparsely packed nodule thelds.

For a denseiy packed distribution of scatterers figh (f), the location of scatterer 1 vill, in generai, impose limitacions on the location of adjacent scatterers, aithough the scattering from the itn scatterer stall vill not affect the average total field significantly. Consideration of pair correlation statistics is possibie using the ciosure condition
\[
\begin{equation*}
\left\langle p^{j}\left(r_{j}\right)\right\rangle_{i j}=\left\langle p^{i}\left(r_{i}\right)\right\rangle_{i} \tag{41}
\end{equation*}
\]
and the hierarchy is truncated after the second equation ( 34 b ) . This closure condition has been dubbed the quasi crystaline approximation by lax (1951).

\subsection*{3.3 FORTHEE EXABINATION OP VAFIOUS TERMS}

Equations (34) define the total pressure field occurring for the multiple scattering of nodales and this total pressure field can be used to determine the dcoustic signature of the nodule field. The main focus of this thesis is the examination the variables \(\bar{g}\) and \(f(k)\) for use in those equations. \(\overline{\mathrm{y}}\), as written in equation (53), is a function of the square root of the scattering cross section \(g(s, w) \quad(w h i c a\) requires quantified acoustical properties), and of the size distribution \(\alpha(s)\).

In general, \(s\) can be set equal to \(a^{2}\) - the nodule's radius squared. Fron equation (20b) we find, in the Rayleagh region (ka<<l), that
\[
\begin{equation*}
g(s, \omega)=\sqrt{\sigma}=a^{3} k^{2} L(\theta) \tag{42}
\end{equation*}
\]
where \(k\) is constant for a given frequency and \(L(\theta) \quad 25\) independent of \(s\). In terms of the variable \(s\), equation (42) becomes
\[
\begin{equation*}
g(s, \omega)=s^{3 / 2} k^{2} L(\theta) \tag{43}
\end{equation*}
\]

For \(s=a^{2}, \alpha(s)\) is given by the probability function \(g\left(a^{2}\right)\) Which is defined in Chapter \(Y\) by equation (56);
\[
\begin{equation*}
a(s)=\frac{s}{b^{2}} e^{\frac{-s^{2}}{2 b^{2}}} \tag{44}
\end{equation*}
\]

Equation (33) for \(\bar{y}\) becones
\[
\begin{equation*}
\bar{g}=k^{2} L(9) \int d s \frac{s}{b^{2}} e^{\frac{-s^{2}}{2 b^{2}}} s^{3 / 2} \tag{45}
\end{equation*}
\]

The size averaqe of the probability distribution a(s) is by definition equal to 1 leaving
\[
\begin{equation*}
\bar{g}=k^{2} L(\theta) \overline{s^{3 / 2}} \tag{46}
\end{equation*}
\]

Where again the overbar denotes size averaged over the entife field. In terms of the radius - a, we have
\[
\begin{align*}
& \bar{g}=k^{2} L(\theta) a^{3}  \tag{47}\\
& \bar{g}=\overline{a^{3}} k^{2}[(1.21)+\cos \theta(.540)] \tag{48}
\end{align*}
\]

So 14 has been shoun thot the total pressure field is a function of the average cubed radius in the kayleigh region - very convenient for figuring average volunes. outside of the Rayleigh region, however, \(g(s, w)\) is a complicated function of and \(\overline{a^{3}}\) will not generally fall directly out of the equations. Determining \(\overline{a^{3}}\) (or any \(\overline{a^{m}}\) ) from whatever averaged function of a that may resuit fron the size averaging of \(g(s, w)\) is the subject of size Distrabutions \(2 n\) Manyanese Nodule Fieids.

As mentioned previously, f(a) is exagined somewhat lightiy in Spatial Distributions in Manganese Noduie fields. Por this study, ve seek oniy to verify the existence of certain pair correlated features of the spatial distribution.


Figure 6. Spherical Coordinate System for Single Scatterer


Figure 7. Coordinate System for Multiple Scattering Analysis

\section*{Chapter IV}

ACOUSTICAL HEASUREMENTS OF AANGANESE NODULES

The acoustical properties of manganese aodules are intrinsic Eduuirements for the application of the scattering analyses to nodule fields. One can choose a specific type of material to which these analyses apply by using values for the density, and the longitudinal and transverse wave speeds wich are similar to those of the desired material. Equation (17) for the scattering cross section requires each of the properties mentioned here. We wust therefore have some quantitative measurements of the density and tine wave specis found in manganese nodules. a sumary of the measurements performed is given airectiy below. a detailed discussion of the procedures follows. Hodule samples from the Fecific (between Cailfornia and Hawail) and from the Atlantic (the blake plateau) were obtained from Deepsea Ventures. Inc. Two northern atiantic nodules were obtalned from Toods Hole Oceanographic Instituticn in Woods Hoie, Massachusettr.

\subsection*{4.1 ACOUSTLCAL EEASDEEMENTS AND PGUCEDUKES}

The nodules, waich were in a sema-dried condition upon receipt, were subaerged in water until saturation (usually occuring witain 48 hour: . Wave speed measurements were then performed, as vell as weight and displacerent voiume measurements. The nodules were tien kila dried (at 108c) to constant mass and wave speed and weight measurements performed again. Wet and dry bulk densities, dry material densities, and porosities were determineu and ay be found in Afpendix a. The compressionad and snear wave speed measurements are also recorded in Appendix A. \(A\) more condensed form of the data containang anformation required for use in tae scattering andlysis may be found in tabie 1. wet bulk density \(\rho_{w}\) simply equals the wet nodule aass \(M_{w}\) divided by the nodule volume \(V\). In determining the wet mass, care was taken to remove excess surface warer. Eaca nodule was weighed several tames and the results averaged to reduce error. Dry bulk density \(\rho_{d}\) is computed similariy except that the \(d r y\) nodule mass \(M_{d}\) is used.
\[
\begin{equation*}
p_{\omega, d}=\frac{M_{\omega, d}}{V} \tag{49}
\end{equation*}
\]

Where \(w\) denotes wet bulk and d denotes dry bulk. The volume incluaes all airspace (or fluid space) witinn the nodule (a significant fraction). Volumes vere obtained on water saturated nodules by a displacement method. The steps are: fill a graduated beaker contaning the nodule to a reference
line witn vater; renove the nodule, takiag care to let water Which was clingang to the surface drip back into the beaker: read the displaced volume off the beaker. The naterial density is the density of the crushed nodule naterial (this exciuces airspace volumes found in the porous whole nodule structure). It is tound by first assuming the saturating Water density to be \(1.0 \mathrm{~g} / \mathrm{cc}\). The mass difference between the wet and the ary nodule 15 the mass of water retained in the porcus nodule. This water mass may be converted to a fiuld (or airsface) volume. Subtractivg thas ajrspace volume from the nodule dispiacenent volune gives the solid nodule material volume. The dry nodule mass equals the nodule material mass (since the weight of any enclosed air is negligible). The solid materad density is
\[
\begin{equation*}
o_{s m}=\frac{M_{d}}{V-\frac{\left(M_{\omega}-M_{d}\right)}{\rho_{H_{2}}}} \tag{50}
\end{equation*}
\]
where sal \(=\) solid material. The porosity \(\gamma\), which is the ratio of airspace volume to tne nodule volume, way be written
\[
\begin{equation*}
\gamma=\frac{\rho_{\mathrm{sm}}-\rho_{\mathrm{d}}}{\partial_{\mathrm{sm}}} \times 100 \% \tag{51}
\end{equation*}
\]

The porosity is not directly used in the scattering analysis and both noduie denssties and forosities are reported in the
literature (Greenslate 1977). These measurenents were performed however to ensure that the nodules contain no large eccentricities and are fairly representative of manganese nodules found in the Pacific and Atlantic oceans. The reader is referred to Pigure (8) for a schematic of the wave speed measuring apparatus. Longitudinal and transverse wave speeds are measured using the corresponding acoustic transducer pairs. The signal generator is of the repeating impulse type. a generated 'input" pulse simultaneousiy excites the sending transducer and reqisters on an oscalloscope screen. The pulse traveis tnrough the nodule specimen and excites the receiving transducer. The signai emanating from the receiving transducer crystal is amplified and displayed on the oscilloscope screen in real time (with respect to the generated output pulse). The distance between the beginning of the input pulse and the beginning of tie response signal the signal that traveled through the nodule), as shown on the oscilloscope screen, us the travei thme through the nodule ana the system. (The syster consists of anytning the acoustic pulse travels througn besides the nodulel. a systen time lagmay be measured by placing the transducers face to face. Subtracting the system time lag gives the acoustic wave travei time through the nodule only. When making these
measurements on a nodule, the transducers must be placed directly across from eaca other on parallel acnined faces of the nodule. The travel time measurement divided by the distance between parallel faces yeilds the wave speed.
\[
\begin{equation*}
c=\frac{\left(t-t^{*}\right)}{d} \tag{52}
\end{equation*}
\]
where \(C\) is the wave speed, \(t * i s\) the systen tare lag, and \(t\) and \(t\) ire shown in Pigure 8.

The type of wave speed measured depends upon the type of transaucer pair used. A lonytudinal transducer crystal can be excited into and can plox up a motion perpendicular to the plane of contact detween crystal and nodule. The longitudinal wape speed then is a measure of compressidility aric is defined es \(\quad C_{L}=\sqrt{E / \rho}\)
where \(E\) is the modulus of elasticity. \(A\) transverse transucer crystal excites of packs up a morion parailel to the nodule/crystal interface. The transperse wave speed is a measure of rigidity (e.g. fluids are non-rigid and therefore, afiov no shear vaves to propagate) and is defined as
\[
\begin{equation*}
c_{\mathrm{T}}=\sqrt{\mathrm{G} / 0} \tag{53b}
\end{equation*}
\]

Where \(G\) is the shear moduius of elasticity.
a coupling greáse was used to date the longitudinal transaucers to the noaule surfaces for mproved perfornance
(better contact - clearer signals). No grease was used for the shear wave transducers which require contact friction between transducer and nodule surface to operate. Both transducer sets responded to larger pressures pushang them against the nodule faces by displaying ciearer signals.

Rotating the compressional wave transducers while on the noaule faces had no effect. But, rotating the shear Wave transducers affected the traver time readings (aote that the oriqutation of the shear wave transducers relative to each other remalned fixed durang this rotation procedure), indicating that the nodules may have some annular shell type structure that responds to the difection in which the shear wave is appilea. Por our data, we attempted to record the mininum and axinum snear wave speeds possible.

An attempt to calibrate the system was made by taking air and water measurements. Sole metal samples (copper, aluminun, and steely were also measured and good results Were indicated for both shear and compressicnal vave speeds. However. unknoun alloy content of our test netals conpared to metcis tabulated in the literature prevented their use for the systen's calluration. Foth alr and water weasured about \(2 \%\) hagh. Theretore, all wave speteds have heen reduced Dy \(2 \%\) from tne messured vinues. It should be mentioned that
while the retals could nut be used for determining a calibration factor, their wave speeds consistently measured the same at difterent times indicating no creep in the systea cailtration setting. Air and water mezsurements generally measured the same but some very saall variations were noted and may be attributed to temperature variations.

A possibie reading error way also exist from reading the oschiloscope screen. The possiole error here was found to be less than \(3 \%\) for all nodule measurements taken except one which had a 68 reading error possible. The reading error magnitude depends on the tine scale selected for dispiay on the oscilloscope. Toe screen is diviaed into ten antervals and each interval \(1: 5\) divided again into ten subintervals. We can discrimillate to within plus or manus one huif of a subinterval. The time lengtn of one intervai may be selected and the absolute error becomes \(\pm .05\) multipiled by that tipe length. The absolute error divided by the travel time recorded is the percent error possible in reading the screen.

\subsection*{4.2 DISCUSSION UP 토 ESULTS}

Major emphasis is to be given to the pacific nodule measurements. for these are the nodules of interest to mining companies. However, Atlantic nodules vere available and were therefore measured also. Appendix a glves complete listings of deta recorded for each sampie. In concensed Table 1 , several samples are excluded from parts of the table for various reasons. Pacific noduses P1, f3, and P8 develofed cracks which prevented some wave speed measurements fron being made. Nodules p6 and p8 broke up before their densities and forosities could be determined. Shear wave speeds could not be deternined for atiantic nodules a 4 and DR 15 because the signal apparently could not make it through the nodules. Nodule cus8 in the wet condition allowed only a weak sinear signal through that was quite low in speed compared to other Atlantic nodules. Examiniry the behavior of the shear wave in other wet nodules, we see that its speed snould increase substantially over the speed for the dry nodule (not so for chis). No exterain cracks are visible on ch5 and we can only assume that the weak signal was miscead. Atlantic nodules DRis and CHS8 (ootalned from woods Ho fe oceanographic Institute) were quite anfferent in treir appearence and thelr acoustical properties when compared to other atlantic nodules. Their
densities ald their compressional and shear wave speeds (when measurable) were low, and themr pores appeared to be filled with \(=\) very fine, lignt colored sediment.

In general, botn Pacific and Atlantic nodules revealed wet densities and porosities very close to those found in the literature for Pacific nodules. Greensiate (1977) gives an average wet bulk density for Paclfic nodules as \(1.95 \mathrm{~g} / \mathrm{cc}\) and a porosity range of between 50 - 60\%. The pacific nodule samples measured to within 2.5 of the \(1.95 \mathrm{~g} / \mathrm{Cc}\) average except for one nodule wich was 98 high. porosities were foutid to range from 50 - 55\%. Average densitles and porosities for atlantic nodules are not found in the literature.

Pacific noduies show a smaller range of compressional wave speeds ( \(1950 \mathrm{~m} / \mathrm{s}\) to \(2500 \mathrm{~m} / \mathrm{s}\) ) with the average ( \(2350 \mathrm{~m} / \mathrm{s}\) ) somewhat lower than comparable measurements for athantic nodules (whicn ranged from 2125 /s to \(3215 m / s\) and averaged at \(2005 \mathrm{~m} / \mathrm{s}\) ). The shear wave speed ranges were about tne same ( \(1615 \mathrm{~m} / \mathrm{s}\) to \(2645 \mathrm{~m} / \mathrm{s}\) ) for Pacific and atlantic nodules. Pacific nodules were less sensitive to shear vave orientation. The higher compressional wave speeds and the qreater sensitivity to stear direction in the Atantac nodules may both be due to the presence or many veans of very hard, white calcareous material (see Gladsby 1977 for a
chemicai analysis)
that is not found 1 n Pacific nodules. The ratio of the shear wave speed to the compressional wave speed ranged from 0.83 to 0.98 in the Pacific nodules and from 0.69 to 0.80 in the Atlantic nodules.

\subsection*{4.3 FURTHPA INYESTIGATION}

The Ataantic nodutes appeared to be wuch wore structuraily sound wether in a wet or dry condition. Tne Pacifuc noduies, dfter drying, tended to break up or develop cracks easily. Visual inspection showed no external cracks In the nodules (wnich nad been dried out before recelpt) tor which bave speed measurements were obrained. whether internal cracks existed or not in the Pacific or Atlantic nodules is not known. There is also evidence that qeneral. pore structure damage may occur during drying out. Possibie internal cracks or pore structure dalage in nodules tnat have been dried out may result in different aechanzcal properties and most ijkely 1 s sower wave propagation speeds because of a less hosogeneous medium. The nodules were measured at atmospheric pressures and temperatures.

Ideally, \(£\) reshiy recovered \(\quad\) odules packed in seawater shoula be measured (for wave speeds) at assimilated ocean deep pressures ana temperatures. A larger sampie group shoule de utilized for greater conizdence in the fesults.

However, given that tnese are the tirst guantitative accounts of acoustical wave velocities in manganese nodules, the fesults are satisfactory for use in the scattering analyses.
Table 1. Acoustical Properties of Manganese Nodules
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
CONCRETION \\
TYPE
\end{tabular}} & \multicolumn{3}{|c|}{ WAVE SPEEDS } & \multirow{2}{*}{\begin{tabular}{c} 
DENSITY \\
\((\mathrm{g} / \mathrm{cc})\)
\end{tabular}} \\
\hline & \(\mathrm{C}_{\mathrm{L}}(\mathrm{m} / \mathrm{s})\) & \(\mathrm{C}_{\mathrm{T}}(\mathrm{m} / \mathrm{s})\) & \(\mathrm{C}_{\mathrm{T}} / \mathrm{C}_{\mathrm{L}}\) & \\
\hline \begin{tabular}{l} 
PACIFIC \\
NODULES
\end{tabular} & \begin{tabular}{c}
\(1950-2500\) \\
{\([2350]^{*}\)}
\end{tabular} & \begin{tabular}{c}
\(1615-2450\) \\
{\([2000]\)}
\end{tabular} & \(0.83-0.98\) & \(1.91-1.96\) \\
\hline \begin{tabular}{l} 
ATLANTIC \\
NODULES
\end{tabular} & \begin{tabular}{c}
\(2125-3215\) \\
{\([2605]\)}
\end{tabular} & \begin{tabular}{c}
\(1625-2580\) \\
{\([1980]\)}
\end{tabular} & \(0.69-0.80\) & \(1.89-2.07\) \\
\hline
\end{tabular}
\[
[ \rfloor-\text { average }
\]


Figure 8. Schematic of Wave Speed Measurement Apparatus

\section*{Chapter \(\nabla\)}

SIZE DISTRIBUTIOAS IN HANGANESE NODULE PIELDS

We wish to detergine a statistical area distribution function that characterizes the frequency with which nodule cross sectional areas occur (reiative to the local average area) in any particuiar nodule sites Such a function wond describe the statistics of nodule sizes which are required for the wultipie scattering anaiysis ( \(\alpha_{i}\) ) 2 f equation (33)) - We can also develop analytic relationshaps betveen averaye radil of different powers. Note that
\[
\overline{a^{n}} \neq \bar{a}
\]
where a is the radius and the oferbar denotes the avarage over a group of noduies.

Por acoustic wave freguencies in the Hayleigh fegion Where the waveiength \(1 s\) long conpared to the nodule dinensions), the scattered pressure is proportional to the radius cubed. Therefore, the average pressure scattered from a nodule is proportional to \(\overline{a^{3}}\) and is convenientiy proportional to the nodules average volume - of great interest to mining concerns. Houever the average radius is ajso needed to ensure equipinent/nodule coupatibility, and this reyuires relating \(\bar{a}\) ana \(a^{3}\). For incoming dcoustic wave freguencies in the resonance requon friat \(1 s\), for freguencies between the sow fiequency kayieigh scatrering
region and the high trequency geometrical scattering region). the scattered pressure is a more complicated function of radius (Ha 1981) which nas not been averaged Yet. The averages of the radius and the cubed radius \(\quad\) ust be obtainabl fros whtever averaged power of the radius tern that may occur. a general relationship between averages of radil to various povers is sought. The sources of data and data preparation are described directiy below. A discussion of the 在athenatical manipulations required to tramsform between averages of different powers of the radius follows.

\subsection*{5.1 DATA REDUCTION}

Two sources of data have been utilized for finding area distribution functions. Dita was obtained darectly fron severel black and wite botton photographs supplied by Deepsea Ventures, Inc. and also from physical characteristles tables of various central pacitac nodule sites compiled by Fewkes, Jcparladd, Feinhart, and sorem (1979 and 1980). Bach characterıstics table examines a smali mepresertative nodule site (typicaliy a sea tloor area of about \(250(c \pi * * 2)\) contain \(1 n g\) arouna 75 nodules. Listed in the tables are the floor plane cross sectional areas, tne Iengths, and the widths of edch individucl noduie in the
site. Prom the fioor plane areas (listed in Appendix \(B\) ) the average cross sectional area of eacn data set is deteraned, and this quantity characterizes a curve describing the distribution of cross sectional areas. Obtaining data from the photographs reguires conslderable effort since the bot tox piane cross sectional area for each undividuai nodule nust first be determined.

The photographs are taken fron less than ten meters above the Facific ocean floor, appromiately 4000 meters below the water surface. In only one of the photographs is there a real length scale at the sea floor aval lable. frhis does not prevent analysis of the other photographs hovever, because the oDjective is to deteraine the distribution of the areas relative to some areraye area, not to predict or determine real scale areas.) one 35 an color siide of each photograph has been prepared. Three cailbration slides to check projection distortion have also been produced. These conslst of various angles and scale lengths placed in different portions of the 35 mm silde frame. When projected onto a screen, the calibration slides showed no discernable distortions of lengths or angles in any portions of the slide frame when the projector was properly positıoned fle. When ieveled and squarely facing the screen).

A nodule fieid slide is projecred onto a Large hanging screen of white paper. \(A\) compronise wust be ade between projected nodule size on the screen and nodule definition. For ease of measurement, the largest size possible is desired for the projected nodule images at the screen (affected by pulling the projector away from the screen and using a zoon lens). But at tne same time, the snarpest image possibie is desired to distinguish the background shades of gray from the sometimes only slightly darker grays of the nodules thenselves fpuling the projector away from the screen resuits in greater light diffusion losses, causing lessened edge definition). All the nodules are traced onto the screen, and any resolution proniems are settled by reference to the original photograph.

The projected cross sectional area or each traced nodule is determined by use of a manual planmeter, in effect, a mechanicai integrator. The outlide of ejch traced nodule wust be followed by the planimeter tracing point. After one trip around the perimeter, the nodule projected area (unscaled) may be read directly from the planimeter in square inches. If a real scale length is proviaed in tne photograph, the real cross sectional area of each nodule may be determinea. otherwise, these projected areas are unscaled. Note that data was collected and reduced fron
only two photographs. This is extrenely tedious work and since data is available in already reduced form (Fewkes: tabies), examining all the photograpas was unnecessary.

There are three types of error possible in using the planiseter: inaccurate reading of the area from the instrument, recording error: inaccurate tracing of the outline of the nodule, execution error; and, inaccurate calibration of the instrument, calibration error. The smallest division marked on the planimeter is a tefth of a square inch and so our recording error is one half of that or . 05 in**2. A repeatability test showea execution error to be less than 005 in**2, the recording error foring which, extra care was taken in reading the planymeter scale in order to minimize recording error). An accuracy test on a 1.0 in**2 square showed calibration error to be undetectable fat least within the bounds afforded by the other errors). These measurenent errors are relatively unimportant because we are attempting to determine qualitative properties of the distrioutions, not precise quantitative information.

One photograph was exawined as a whole (consisting of 388 nooules) and also in two subsections fconsisting of 240 and 142 nodules each). The resulting curves were compared. The tables from pewkes et al. do not permit sectioning
because the physical arrangement of the nodules on the ocean floor is unknown.

First, we mst allocate each nodule size in a data set into its discretized unterval of cross sectional area. That is, we need to know how many nodules have cross sectional areas between 0 and Limit 1, between limit 1 and limit 2 , and so on until all nodules have been accounted for. Each interval should have the same size. The size is arbitrary but initialiy, it should be as small as practicaliy possible. If the interval size proves to be too smail fas wils be discussed shortly). combining adjolning intervals to make larger (but preterabiy still equal sized) intervals is simple.

This process vill give an area distribution i.e. number of nodules vs. cross sectional area interval) for a data set in histogran or bar graph form. or one may transpose to the radius distribution or to the radius to the second, third, or sirth power distributions by piotting the number of nodules within each interval against tne appropriate iaterval of radius raised to whatever power (see plots).

Referring to the data sets 1a. 1 b , and ic (listed in Appendix B), we see Interval sizes of \(2.4-2.5 \mathrm{~cm} * * 2\). This spacing actuaiiy corresponds to interval sizes of 0.1 in**2

\begin{abstract}
(the swallest measurement size possible using the planimeter) transformed to the metric scale and multiplied by a real scale ratio ferived from the real scale length supplied in the photograph) Examining this data, ve see that there are a possible 33 intervals. But, plotting the distribution of nodules against 33 area intervals in bar graph form would result in an excessively rough graph (a problem inherent in small data sets and remedied py obtaining iarger deta sets or, in this case, by using larger discretized plotting intervals) . By using two, three, or more intervals in a row as a new larger interval spacing, the histogran can be smoothed out. Smoothing of the graph is necessary in order to fit a curve to it. Hote that the data sets from Feukes tables (real scale data) are ciassified into 1 co**2 intervals (Appendix \(B\), Data sources 3 through 8), but the bar graphs produced for this data (Pigure 17 and Figures 20 through 24) use 3 ca**2 intervals for a smoother bar grapn representation of the distributions.
\end{abstract}

\subsection*{5.2 SIZE DISTRIBOTION_STATISTICS}

Prom the statistics of the radius squared data, we can calculate an average of the squared radius \(\overline{a^{2}}\) and the variance of the radius squared \(\sigma_{a}{ }^{2}\). Likewise, we can calculate the average rauras \(\bar{a}\). the average of the cubed
radius \(\overline{a^{3}}\). the average of the radius to the sirth power \(\overline{a^{6}}\). and corresponding variances of the radius to a power. The general form for the average ath power of tne radius \(\overline{a^{m}}\) is
\[
\begin{equation*}
\overline{a^{m}}=\frac{1}{N} \sum_{i=1}^{N} a_{i}^{m} n_{i} \tag{54}
\end{equation*}
\]
and for the variance of that average \(\sigma\),
\[
\begin{equation*}
\sigma_{a^{\mathrm{m}}}=\left[\frac{1}{N} \sum_{i=1}^{N}\left(a_{1}^{m}-\bar{a}^{\mathrm{m}}\right)^{2} n_{i}\right]^{1 / 2} \tag{55}
\end{equation*}
\]
where \(x\) is rotal number of nodules, \(a_{1}^{m i s}\) sove discrete size, \(n_{i}\) is the number of nodules having size \(a_{i}^{m}\), and is the power of the radius under consideration.

It was found that a Rayleigh probability function (or density) describes the radius squared distribution quite Well (the radius square aistribution and the area distribution are the same). The Rayleigh probability function for the radius squared distribution is;
\[
\begin{equation*}
q(x)=\frac{x}{b^{2}} e^{\frac{-x^{2}}{2 b^{2}}} \tag{56}
\end{equation*}
\]
where \(x=a^{2}\) and \(b\) is related to the average squared radius \(\overline{a^{2}}\) (the relationship will be derived shortly). Thus, the nodule size distribution (for any radzus pover) is specified by the single kayleigh parameter b which way be quantitied frol real data (i.e. area statistics), or used to relate the averages of different powers of the radius. In Davenport
and koot (1958) a discussion is given on monotonicaliy increasing or decreasing probability function sets and their use in other single variable functions as the single variable. An expression is obtained uhich is of use 1 a relating the probability densities for dafferent povers of the radius;
\[
\begin{equation*}
q_{n}(y)=q_{2}(x)\left|\frac{d x}{d y}\right| \tag{57}
\end{equation*}
\]
where \(y=a^{n}, x=a^{2}\), and \(q_{n}\) and \(q_{2}\) are probability functions of radii to the indicated powers (indicated by subscripts) - For thls particular case;
\[
\begin{equation*}
\left.q_{n}(y)=\frac{x}{b^{2}} e^{\frac{-x^{2}}{2 b^{2}}} \right\rvert\, \frac{d x}{d y} \tag{58}
\end{equation*}
\]

To determine the radius probability density, we let
\[
y=a=x^{1 / 2}
\]
then
\[
\begin{align*}
& \frac{d y}{d x}=\frac{1}{2 x^{1 / 2}} \\
& q_{1}(y=a)=\frac{x}{b^{2}} e^{\frac{-x^{2}}{2 b^{2}}}\left|2 x^{1 / 2}\right| \\
& q_{1}(a)=2 \frac{a^{3}}{b^{2}} e^{\frac{-a^{4}}{2 b^{2}}} \tag{59}
\end{align*}
\]

Similarly, to deteraine the radius cubed probability density, we let
\[
y=a^{3}=x^{3 / 2}
\]
then
\[
\frac{d y}{d x}=\frac{3}{2} x^{1 / 2}
\]
and we find
\[
\begin{equation*}
q_{3}\left(a^{3}\right)=\frac{2}{3} \frac{a}{b^{2}} e^{\frac{-a^{4}}{2 b^{2}}} \tag{60}
\end{equation*}
\]

By foliowing the above procedures through with \(y=a^{n}\), we find the general tormula for the \(a^{n}\) probability density (where \(n\) is zeal and positive):
\[
\begin{equation*}
q_{n}\left(a^{n}\right)=\frac{2}{n} \frac{a^{(4-n)}}{b^{2}} e^{\frac{-a^{4}}{2 b^{2}}} \tag{61a}
\end{equation*}
\]
or
\[
\begin{equation*}
q_{n}\left(a^{n}\right)=\frac{2}{n} \frac{x^{\left(2-\frac{n}{2}\right)} \frac{-x^{2}}{2 b^{2}}}{b^{2}} e^{2 b^{2}} \tag{61b}
\end{equation*}
\]
where \(x=a^{2}\). The last equation is in teras of \(x\) instead of a in order to remind us that tnis analysis is based on a radius squared distribution curve fit. It now remans to evaluate the Rayleggh parameter 0 .

By definition of a statistical average,
\[
\begin{align*}
\bar{a}=\overline{x^{1 / 2}} & =\int_{0}^{\infty} x^{1 / 2} q_{2}(x) d x \\
& =\int_{0}^{\infty} \frac{x^{3 / 2}}{b^{2}} e^{2 b^{2}} d x \tag{62}
\end{align*}
\]
and
\[
\begin{align*}
\overline{a^{2}}=\bar{x} & =\int_{0}^{62} x q_{2}(x) d x \\
& =\int_{0}^{\infty} \frac{x^{2}}{b^{2}} e^{\frac{-x^{2}}{2}} d x
\end{align*}
\]

Similar equations are obtainable for \(\overline{a^{3}}\) or any \(\overline{a^{\mathrm{n}}}\) for \(n\) real and positive). Fron inteqration formula tables, we Know
\[
\begin{equation*}
\int_{0}^{\infty} \eta^{v-1} e^{-\mu \pi} d \eta=\mu^{-v} r(v) \tag{64}
\end{equation*}
\]
for \(v\) real and greater than zero. In general, the gamaa function \(\Gamma(v)\) is given by
\[
\begin{equation*}
\Gamma\left(m+\frac{1}{2}\right)=\frac{\sqrt{T}}{2^{m}}(2 m-1)!! \tag{65}
\end{equation*}
\]
for an integer \(m\). Por a non-integer argunent, the function is tabulated in nathematical handbooks. We can use this integration if we let
\[
\eta=x^{2}
\]
then
\[
d n=2 x d x
\]

For the average radius squared given by equation (63), we find
\[
\begin{equation*}
\overline{a^{2}}=\frac{1}{2 b^{2}} \int_{0}^{\infty} 1 / 2 e^{\frac{-\eta}{2 b^{2}}} d \eta \tag{66}
\end{equation*}
\]
requiring that
\[
v=3 / 2
\]
and
\[
u=\frac{1}{2 b^{2}}
\]

Then
\[
\begin{equation*}
\overline{a^{2}}=\left(\frac{1}{2 b^{2}}\right)\left(\frac{1}{2 b^{2}}\right)^{-3 / 2} \Gamma(3 / 2) \tag{67}
\end{equation*}
\]

By using gamma function tables, we find
\[
\begin{equation*}
\overline{a^{2}}=1.2533 b \tag{68}
\end{equation*}
\]

Similarly, we can find
\[
\begin{align*}
& \frac{\bar{a}}{\frac{a^{3}}{}}=1.0780 b^{1 / 2}  \tag{69a}\\
& \frac{a^{6}}{}=3.5457 b^{3 / 2}  \tag{69b}\\
&=3598 b^{3}
\end{align*}
\]

Poliowing the above procedures tarough tor \(\overline{a^{n}}\) we find the following:
\[
\begin{equation*}
\therefore=\frac{1}{2 b^{2}} \tag{70}
\end{equation*}
\]
\[
\begin{equation*}
=\frac{n}{4}-1 \tag{71}
\end{equation*}
\]
and the general formula for the average of the radius to the power \(n\) is:
\[
\begin{equation*}
\overline{a^{n}}=\left(\frac{1}{2 b^{2}}\right)^{\frac{-n}{4}}-\left(\frac{n}{4}+1\right) \tag{72}
\end{equation*}
\]
for any real positive value of n .
This shows that the average radil to different powers are related by oniy one paramerer - b. below are some erample transforms to \(\overline{a^{3}}\) from various other average radil povers.
\[
\begin{align*}
& \overline{a^{3}}=1.2388 \bar{a}^{3}  \tag{73a}\\
& \overline{a^{3}}=1.1016 \bar{a}^{2} 3 / 2 \\
& \overline{a^{3}}=0.7972 \bar{a}^{5} 1 / 2
\end{align*}
\]

\subsection*{5.3 DISCUSSION OF EESULTS}

Plots are presented for the distributions of the radius a. the radius squared \(a^{2}\), and the radius cubed \(a^{3}\) in Pigures 9 through 30. Radius square histograms or bar graphs represent actual ocean floor area measurements of nodules taken from photographs or data tables faid values are real size except those from data source 2 whicu are unscaled). Radius and radius cubed histograms are derived assumang spherical nodules. This is obviousiy not the case for read nodules and will be commented on later.

The kayleigh probabiiity density curves for \(a^{2}\) and the predictea probability density curves for a and \(a^{3}\) fit the discretized data (bar graphs) quite welı. Average radius functicns are indicated on the piots by dasbed liaes. To be matcated by the probability density curver, tae bar grapns have been normalized by dividing the number of nodules an each intervai by the totat pumber of nodules in the data set and by the interval size.

Plotted in Pigure 31 are several data sets from various sites \(2 n\) the pacific ocean (data sources 1a, 2, b, 9) with nearly tar same average nodule size. The polnts represent the madile of each discretized interval tromeach of the
äata set histoyrams The data sets were individually normalized \(u s\) described abote and then each set was non-dimensionalazed by corfe:sponding values of a. 'Phat is, the non-dimensional number of noguies to be flotted abong the ordinate axis for one data set equals
\[
\frac{n_{i}}{\text { XINT } \cdot N} \cdot \frac{-2}{a}
\]

Where \(n_{i}\) is the nubber of nodules in interval \(i\), \(x A^{\prime}\) is dimensional width of intervali, and \(N\) is total mumber of nodules for which \(\bar{a}, n_{1}\), and refer to only one data set. The radius squared on the abscissa axis is non-dimensionalized \(D y\) dividing \(D y\) tite square of tac average radius \(4 v e r a g e d\) over \(a 11\) the data sets. The fayleigh probability density \(P(x)\) is non-dimensiondilzed \(D y\) multiplying equation (57) by the averaged average radius and using the non-aimensionat radius square (plotted on the abscissa axis) as the argument \(x\). The probability curve is normalized to fit all the data sets by computing an average Rayleign paraqeter b. This involves computing an averaged average square radius fot to be confused with the square of the averaged verage radius). The resulting probabifity curve fits the data points father well. Figure 32 is a simildr plot using Pacifuc ocead sites fata sources 3 through 7) that were all physicaliy witain 107 peters ( 350 feet) of eaci otner. The results are similar.

The measured average fadius, and the averages of the second, third, and sixth powers of the radius are listed for each data source in Appendix B. Again, these are based on true measured values of the radius squared fexcept for the unscaled case of data source 2) - Equations (73) are related by tine Rayleagh parameter \(b\) (see equations 68 and 69) - By these equations, we can use averages of the radius to various powers to predict say \(\overline{a^{3}}\) and then compare the preaicted \(\overline{a^{3}}\) with the measured \(\overline{a^{3}}\). In dolng this for mary of the data sources, the ergor is found to te less than \(\pm 5 \%\) in most cases. Rrrors incurred by assuming \(a^{3}=\frac{a^{n}}{a^{3} / n}\) may bet as mucn as 50\%.

\subsection*{5.4 PUBTHEA IN VESTIGATIOM}
as mentioned earlıer. Pacific manganese nodules are not spherical anc so the relationship between the length (the radius), the ocean \(t l o o r\) area (the radius squared), and the volume (the radius cubed) of a noduie is not sample. McFarland (1980) has enpiricaily derived a relationship between nodule mass (volume tines density) and thatongest (floor flane) Iength of typicai nodules (the longest digension of the nodules ainost aluays occurs in the ocedn fioor plane since nodules dre fiattened in the vertacal airection). The reidtionshlp has the form
\[
\begin{equation*}
\mathrm{MASS}=.54(\mathrm{LENGTH})^{2.67} \tag{74}
\end{equation*}
\]
\begin{tabular}{|c|}
\hline Whether or not this relatioaship nolds over large areas of \\
\hline r the growth characteristics of noqules are the same \\
\hline anpwhere in the Pacific. Fewres' tables, from which several \\
\hline data sets of floor plane areas were taken (appendix B), also \\
\hline include length to width ratios of nodules (note Bcparland is \\
\hline a co-author with Pevkes and the nodule mass to length \\
\hline relationship is quite likely based in part on Fewkes" Length \\
\hline n ratios - Examiunag results fron tests of tne \\
\hline system proposed in this paper may indicate \(1 f\) further \\
\hline investigation is required on the eftects of the iength to \\
\hline ss relationship ana \\
\hline
\end{tabular}


Figure 9. Size Distribution Curve Fit for Data Source la


Figure 10. Size Distribution Curve Fit for Data Source la


Figure 11. Size Distribution Curve Fit for Data Source la


Figure 12. Size Distribution Curve Fit for Data Source lb


Figure 13. Size Distribution Curve Fit for Data Source 1 c


Figure 14. Size Distribution Curve Fit for Data Source 2


Figure 15. Size Distribution Curve Fit for Data Source 2


Figure 16. Size Distribution Curve Fit for Data Source 2


Figure 17. Size Distribution Curve Fit for Data Source 8


Figure 18. Size Distribution Curve Fit for Data Source 8


Figure 19. Size Distribution Curve Fit for Data Source 8


Figure 20. Size Distribution Curve Fit for Data Source 3


Figure 21. Size Distribution Curve Fit for Oata Source 4


Figure 22. Size Distribution Curve Fit for Data Source 5


Figure 23. Size Distribution Curve Fit for Data Source 6


Figure 24. Size Distribution Curve Fit for Data Source 7


Figure 25. Size Distribution Curve Fit for Data Source 9


Figure 26. Size Distribution Curve Fit for Data Source 9


Figure 27. Size Distribution Curve Fit for Data Source 9


Figure 28. Size Distribution Curve Fit for Data Source 10


Figure 29. Size Distribution Curve Fit for Data Source 10


Figure 30. Size Distribution Curve Fit for Data Source 10


Figure 31. Nondimensional Size Distribution Curve Fit for Combined Data Sources la, 2, 8, and 9


Figure 32. Nondimensional Size Distribution Curve Fit for Combined Data Sources 3, 4, 5, 6, and 7

\section*{Chapter PI}

SPATIAL DISTRIEUTIONS IN MANGANESE NODULE FIEIDS

In sparsely populated nodule fields, the locatzonal Eelationship oetween any two nodules is essentialiy randon. Nodules are spaced far enough apart so that one nodule does not impose significant locational restrictions on anotner.

In densely packed nodule fielas, the possible location of any nodule mag be appreciably inhibited by the presence of other nearby nodules. If indtidlly, no nodule locations are knowir the probadility that the ith nodule is at a specific iocation is randor. Hovever, lf a nodule is known to be at location 1 , the probability of the jth nodule being at a specific location is related to the ith nodule's position. The probability that the jth noduie is jocated in a reqion far away from the ith aoquie is nearly random (tne relative location of the ljth pair 15 very weakiy corfelated). However, if the jth nodule is located close lo the ith nodule, there \(i s\) a honrandon pair correlation. Locational pair correlation is represented as the deviation from the random condition by the fadial distribution function \(\ddagger(R)=\)

Higher order locational statistics (conditional prodanilities) are required for configurational averaging in densely packed fieids. The second heirerchial equation of
the Poldy-Lay series (equation 34 ) considers locational correlation of nodule pairs through \(f(R)\). Therefore, for densely packed systems, equations (34a) and (34b) must be used. Por sparsely packed systens, pair correlations are insignificant and the use of equation (34a) alone is sufficient.

The radial distribution function may be found in the following way. Consider one nodule at the center of a large field of nodules. If we set up enough circular rings of constant width about that nodule to encompass all other noduies in the field, and then count the number of other nodules found in eaci ring interval, the result is a discretized radial distribution twe shall modify this sifghtly when we consider the statistics of the resuits).

Hong (1980) numerically defived sinilat radial probability functions for hard spheres on a plane. fis 1nclusion of paif statistics yields good multiple scattering results for densely packed systens. Tnere will be no attenpt to fit a curve to the radial distribution bar grafh or cetermine an empirical distriburion function as was done for the size distripution analysis. The lipited use of information from the radial distribution at present does not warrant such a course. Interest iies in confirming yeneral trends anticipated from reviewing Hong's paper.

Features of the radial probability distribution toat should be emphasized are the exclusion length, the favorabie location region, the shielded region, and the randon probability region. The exciusion length defines the region intediately surrounding the center nodule in which very few other nodules are located. \(f(R)\) equals zero here. The randon probability region refers to distant regions (far frow the center Lodule) and is represented by f(R) being equal to one. The favorable location region is a region of nearest neighbors, just outside of the exciusion length region, where the probability of anotiner noaule existing, \(f(R)\). becones greater than one. The favoravie location region causes a shielding effect on the ring intervais ingeãately follouing it folng touards the distant reqions) - \(P(R)\) dips beior the randon level (3.0) in this shielded region because eacn nodule in the favorabie location region has its own exclusion length.

\subsection*{0.1 DeTA EEDDCTION}

Fadial distributions are determined for photographic data sources 1 and 2 . The eniarged nodule field reproductions proauced for the slze distridution analyses are used. The center of each reproduced nodule in the fieid is narked and numbered, and a cartesian coordinate system is
superimposed over the entire tield. The location of the origin is unimportant. The \(x\) and \(y\) coordinates of each nodule center are then recorded using an electronic digitizer. The distance between any two nodules then is just a vector adation problem.

Just as we could vary the interval lengtn for the size distribution, the interval size for the radial distribution is varied by using larger or smalier ring widths. Different interval sizes enhance various ieatures of interest in the distributions. A large interval size saooths out the distribution (clearly displaying the levelling oft in the far fielaj, but it does not accurately distinguish the near field features (exclusion length, farorable region, shielding). Too small an interval size results in a very rough graph due to using a discretızed intervai form to represent small data sets). A trade-oft is required.

Considering one center nodule and its relationship to surrounding noduies provides too smali a data set with which to work. Therefore, a group of center nodules (say 20 to 40 nodules) is uthlized. Identical ring interval systems are set up around each center nodule and the number of nodules existing in corresponding ring intervals are suaned. The fact that 20 center nodules are used instead of one is considered in a later normailzation. This larger set of
data is also fore representative of the total field after averaging．

Another problem encountered involves being able to include enough intervals without running off the photoufaphic reproduction．Por a sinqle center nodule，the intervals wust extend out to at least five or six nodule diametrrs to be able to infer any trenos in the distribution．For the single nodule in the center of a reproauction this is no probie⿴囗十⺝丶 gut，for a nodule at the outer edge of a large group of center nodules，it becones a problem（where the intervals must extend out five or sax average diameters）－Considering the sizes of the reproductions and the nodules， 11 center nodules were ustd in data source 1 ，and 40 center nodules in data source 2.

\subsection*{6.2 CALCOLATIONS}

The radial distribution proposed at the beginning of this section plots a unber of nodules \(1 n\) each intervai \(n_{i}\) against．\(r_{i}\) ，the distance from the center noduie to the interval \(i\) ．In the resulting bar graph，\(n_{i}\) simply increases With distance fror the center nodule．This occurs decause \(a s r_{i}\) increases and the interval（ring）width or remains constant，the area covered by each successive ring increases proportional to \(r\) ．The number of nodules foumd in
successive intervais is therefore expected to do the same. The irobsem is eliwinated by dividing each \(n_{i}\) by the corresponding \(r_{i}\). So, we snould plot the number of nodules in each interval divided by the distance from the center nodule to the interval, \(\quad n_{i} / r_{i}\), against the same center nodule to interval distance, \(r_{i}\).

The area of a particular ring interval \(A_{i}\) encarcling some center nodule is
\[
\begin{equation*}
A_{i}=2 \pi r_{i} \Delta r \tag{75}
\end{equation*}
\]

The nunber donsity \(\hat{f}\) (number of nodules per unit drea) of a randoy districution way be defined as
\[
\begin{equation*}
\hat{\rho}=N / A \tag{76}
\end{equation*}
\]

Where is the total numer of nodules and a is the total bottor ared in which they lie. For this randon discribution we can also write
\[
\begin{equation*}
\hat{\rho}=n_{i} / A_{i} \tag{77}
\end{equation*}
\]

Where subscript i indicates some interval. Therefore, fron equations (75) and (77),
\[
\begin{equation*}
\frac{n_{i}}{A_{i} \hat{\rho}}=\frac{n_{1}}{2 \pi r_{i} \Delta r \hat{p}}=1 \tag{78}
\end{equation*}
\]
where this expression is written for one center nodule.
Por the case of \(M\) center nodules in a random distribution, we can write
\[
n_{T_{i}}=\sum_{j=1}^{M} \mathrm{r}_{1 j}
\]

Where \(n_{T_{1}}\) is the total number of nodules in the combined interval \(i\) due to all \(h\) center nodules. he can then assume, for any one center nodule, that
\[
\begin{equation*}
n_{i} \approx \frac{n_{T_{i}}}{M} \tag{80}
\end{equation*}
\]

Thus, equation (78) becomes
\[
\begin{equation*}
1=\frac{r_{I_{i}}}{2 \pi r_{i} \Delta r \dot{O M}} \tag{81}
\end{equation*}
\]

We should therefore plot \(n_{T_{1}} / r_{i} \quad \nabla S . r_{i}\). From equation ( \({ }^{1} 1\) ), we see
\[
\begin{equation*}
\frac{\mathrm{n}_{i}}{\mathrm{r}_{i}}=2 \pi \Delta \mathrm{r} \hat{\rho \mathrm{M}} \tag{82}
\end{equation*}
\]
a constant, for a randon aistribution.
Near the center nodule(s) the distribution is not random - it is pair correlated. But, as one moves away from the center nodule (into the far field), the distridution becomes randotr, va_idating equation (82). The expected leveling off of the dastribution shouid occur in the far field at a magnitude of \(n_{T_{1}} / r_{1}\) equal to \(2 \pi \Delta r \hat{\rho} M\). Dividing \(\mathrm{n}_{\mathrm{T}_{\mathrm{i}}} / \mathrm{r}_{\mathrm{i}}\) for the entire field (near and far) DY \(2 \pi \Delta r \mathrm{BM}\) gives us at expression for the radıal distribution \(f(\mathbb{A})\), such that \(f(k)\) goes to one in the farfield indicating a random distribution. Then the aiscretized radial distribution is expressed by
\[
f(R)=\frac{{ }^{T_{i}}}{r_{i}} \frac{1}{2 \pi \Delta r \hat{\beta} M}
\]

\subsection*{6.3 DISCUSSION OP KESULTS}

Radial distributions for data sources 1 and 2 are plotted in Pigures 33 and 34 . Number of average diameters from the center nodule(s) is ploted along the \(x\) axis. Tne \(Y\) axis has oneu normalized by equation (82). In the tar field (further than 6 or 7 diameters away), toe radaid dastripution should level of \(f\) to \(f(R)=1.0\). The near field (within 5 diameters or so) shouid show the exclusion length, favoradie location, and snielded regions.

A problem is encountered with data source 1 (Figure 33) in that the far fieid is never quite reached. The photograph of the nodule faeld saply was not large enougn to qet very far away from the center nodules.

One can see that neither distrabution \(1 s\) very saootn. If one attearis to eyeball an average througn the far field fluctuations, that average falls just short of the theoretically predicted \(f(B)=1\). This may be the resuit of using toc few center nodules to represent the fiela.

In the mear tieid, one cleariy sees an exclusion region and a sharp rise representing the favorable location region. Irifediately foliowing the rise, one sees the shielded region
as a sow dip. Note in Figure 34 that this rise-dip pattern apparently repeats itself several times before being lost in the fiucuacions. This indicates that secondary and tertiacy favorable locations and associated sheliding effects may de present.

Por data source 2 (Figure 34), the exclusion length is at ienst 1.5 average diameters. The largest concentration of other nodules occurs at a distance of 2 to 3 average nodule dicmetors.

Data source 1 (Pigure 33) shows the shortcomings of this approach. According to the plot here, the ainimua exciusion length is one average radius. For a field of uniformiy sized nodules, the shaimum exciusion lengtn vould have to be at least one diameter fthe distance between nodule centers for nodule sides touchingl. However, noduie fields are not uniform. He must deal with an average nodule radius (averiged over the field). Some smalier noduces may be clustr togetaer taan other nodules so that the distance between their centers is less than the field averaged dianeter. In the case of Figure 33, four center nodules were much smalier than average and were located very near each other. Hence, the low exclusion leagth. Healizing this point, one can eyebali an exciusion length petveen . 7 s and 1.25 average diameters and the largest concentration of Other nodules at 1.25 to 1.75 diameter's cistance.

The guratitarive information found above fexciusion lengtns and favorable distances) may be used to evaluate the integral in equation (340) foz a typical nodule field in order tu ascertain the iefortance of the pair correlatione
6.4 FUPTEER TNYESTIGATION

It has been shown that the expected exclusion. favorable location, and shielded regions for palf corielated radial distributions ao exist in manganese noduiefieids. The importance of these features \(1 n\) the scattering analyshs and the expression of the dastribution function 1 a terms of these features shoula be stuolied next. The exciushon iengtn is expected to increase, ana the magnitude of the favorable location probabliity is expected to flatten out foraras \(I^{\prime}(R)=1\) with decreasing nodule population density. These reldtionships shouid also be exanined.

So, future exanination ot locationai distributions should look into the followny topics.
1) Effect of a typical radial distribution function on the multipla scattering analysis. Nust it be included and can the function be expressed in a simpiffied manner?
2) Variation of near field teatures of the radial dastribution function uith changes in nodule number density. Is the variation significant over the range of densities for practical miniag intertsts?
j) Variation of radial distribution function with number aensity change for large botton areas (on

\footnotetext{
the order of \(10,000{ }^{2}\) ) as opposed to the very smali data sers used for this analysis fon the order of \(7 \mathbf{m}^{2}\) ).
}


\section*{SUMMARY OF CONCLUSIONS}

\begin{abstract}
This thesis has experimentally examined tnree topics fundamental to the theoretical analysis of acousticai scattering frop manganese nodule fields for the purpose ot obtaining quantitative results from the theory. The thred areas of interest are acoustical. properties of manganese noduies, size distributions and spatial aistrabutions in anganese nodule fields.

To quantatatively evaluate the scattered response of ar acoustically excited manganese nodule, longitudinal and transverse vave speeds vere measured in Pacific and atiantic nodules. The major results are listed in Table 1. Average Longitudinal vave speeds vere found to be \(23501 / 5\) for the Pacific nodules and \(2605 \mathrm{~m} / \mathrm{s}\) for the dtantac nodules. Average transverse wave speeds were found to be between 2000 and \(2050 \mathrm{n} / \mathrm{s}\) for both the Pacific and the atlantic nodules.

These measurements vere performed under atwospheric pressures on nodules that had been saturated in fresh water. It is sugqested that further measurenents be performed under assimilated in situ conditions. This would require that the nodules remain in sea vater after recopery from the ocean bottom, and also, that the measurements be performed 10 a pressure chamber capable of ocean deep prescures.
\end{abstract}

Examination of the distribution of noaule cross-sectional sizes in ocean botton photographs reveals that the nodule radius squared distribution is descrived by the Rayleigh probability function. This function \(1 s\) given by equation (56) as
\[
q(x)=\frac{x}{b^{2}} e^{\frac{-x^{2}}{2 b^{2}}}
\]
where \(x\) equals the nodule cross-sectiond radius squared. and \(b\) is a function of the average sguare radius. Through some statistical manipulations, probability functions for other powers of the radius can be written, and averages of the radius to various povers can be related through the parameter \(b\) in the above equation. This latter capability is necessary wen attempting to recover specific average powers of the radius, such as \(\overline{a^{3}}\) (a measure of the average nodule volume), from any \(\overline{a^{n}}\) that falls out of the foldy-Lax equations (34a) and (34b).

Another iaportant result of this anaiysis is the ability to size average any function of the radius, tn(a), over a field of nodules. This allows size averaging of an individual nodule scattering strength fas given by equation 20a, for exalple) over a nodule field, which results in an average field scattering strength (equation 48) for use in evaluating the Poldy-lax equations. The size average of fn(a) is given by
\[
\overline{\operatorname{fn}(a)}=\int d a 2 \frac{a^{3}}{b^{2}} e^{\frac{-a^{4}}{2 b^{2}}} \operatorname{en}(a)
\]

Note that the predicted radius probability function is used here instead of the experimentally determined radius squared probability function.

Purther investigation into the lass - radius relationship may de required because Pacific nodules are not spherical as assumed for this size distribution analysis. Also, the effect of nonspherical noaules in the scattering theory has not been considered.

Analysis of the locational distribution of nodules on the ocean bottom shows that several pair correlated features exist and may be important in the scatering theory when applied to densely populated nodule fields. par away from some center nodule, the probability of finding nodules at a particular distance from the center nodule becores a constant. This is aresult of the randow distribution of nodule locations in the far field. The probability function, \(f(R)\), is represented by the number of nodules, at some distance from the center nodule, divided by that distance. In the near fiela, nowever, nodule locations are correlated. Around any nodule there exists an exciusion region (2n which no other noduie may be located). a
favorable location region (in which the probability of finding other nodules is greater than the far field random probability), and finally, a shielded region (in which the probability of finding other nodules is less than that for the far field) - The shielded region is caused by the exclusion lengths of nodules in the favorable location region.

Putare emamination of locational distributions should look into the following topics. fow are the near tieid features frimarily the exclusion length and favorable location regions) related to the nodule number density \(\hat{f}\) ? How sigoificant is \(f(A)\) on the witiple scattering analysis and can a simplified expression for \(f(R)\) be employed? What is the effect of examining a very large bottom area fon the order of \(10,000 \mathrm{~m}^{2}\) ) on the radial distribution function?

\section*{Appendix A}
acoustical propreties of manganese nodules

Measured Wave Speeds for Pacific Ocean Manganese Nodules in Wet and Dry Conditions


\section*{Measured Densities and Porositles for Pacific Ocean Manganese Nodules}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline NODULE SAMPLE ID & \[
\begin{gathered}
\text { WET } \\
\text { DENSITY } \\
\mathrm{g} / \mathrm{cm}^{3} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { DRY } \\
\text { DENSITY } \\
\mathrm{g} / \mathrm{cm}^{3} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { SOLID } \\
& \text { MATERIAL } \\
& \text { DENSITY } \\
& \mathrm{g} / \mathrm{cm}^{3} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { WET } \\
& \text { MASS } \\
& -\quad 9 \\
& \hline
\end{aligned}
\] & DRY MASS
\[
\mathrm{g}
\] & VOLIJME
\[
\mathrm{cm}^{3}
\] & \begin{tabular}{c} 
POROSITY \\
\(\%\) \\
\hline
\end{tabular} \\
\hline P1 & 1.99 & 1.47 & 3.05 & 38.8 & 28.7 & 19.5 & 51.8 \\
\hline P2 & 1.91 & 1.41 & 2.82 & 47.9 & 35.3 & 25.1 & 50.2 \\
\hline P3 & 1.99 & 1.48 & 3.05 & 70.8 & 52.5 & 35.5 & 51.5 \\
\hline P5 & 1.96 & 1.42 & 3.07 & 19.4 & 14.1 & 9.9 & 53.5 \\
\hline P6 & - & 1.35 & - & - & 32.3 & 23.9 & - \\
\hline P7 & 1.95 & 1.42 & 3.00 & 28.4 & 20.7 & 14.6 & 52.7 \\
\hline P8 & - & - & - & - & 12.2 & - & - \\
\hline P9 & 2.13 & 1.59 & 3.47 & 25.6 & 19.1 & 12.0 & 54.2 \\
\hline
\end{tabular}

Measured Wave Speeds for Atlantic Ocean Manganese Nodules in Wet and Dry Conditions
\begin{tabular}{|c|c|c|c|c|c|}
\hline NODULE SAMPLE ID & \[
\begin{array}{r}
C_{L} \\
\text { wet } \\
\mathrm{m} / \mathrm{s}
\end{array}
\] & \[
\begin{array}{r}
C_{T} \\
\mathrm{w} e \mathrm{t} \\
\mathrm{~m} / \mathrm{s} \\
\hline
\end{array}
\] & \[
\begin{array}{r}
C_{L} \\
d r y \\
m / s \\
\hline
\end{array}
\] & \[
\begin{array}{r}
C_{T} \\
\text { dry } \\
\mathrm{m} / \mathrm{s} \\
\hline
\end{array}
\] & \[
{ }_{\text {wet }}^{C_{T}}
\] \\
\hline Al & \[
\begin{aligned}
& 3038 \\
& \text { to } \\
& 3214
\end{aligned}
\] & \[
\begin{aligned}
& 2274 \\
& \text { to } \\
& 2577
\end{aligned}
\] & 2548 & 2195 & \[
\begin{aligned}
& 0.75 \\
& \text { to } \\
& 0.80
\end{aligned}
\] \\
\hline A2 & \[
\begin{aligned}
& 2362 \\
& \text { to } \\
& 2391
\end{aligned}
\] & 1627 to 1754 & 1891 & 1842 & \[
\begin{aligned}
& 0.69 \\
& \text { to } \\
& 0.73
\end{aligned}
\] \\
\hline A3 & \[
\begin{aligned}
& 2450 \\
& \text { to } \\
& 2646
\end{aligned}
\] & 1744 to 1911 & \begin{tabular}{l}
2646 \\
to 2744
\end{tabular} & 1411 & \[
\begin{aligned}
& 0.71 \\
& \text { to } \\
& 0.72
\end{aligned}
\] \\
\hline A4 & \[
\begin{aligned}
& 2127 \\
& \text { to } \\
& 2205
\end{aligned}
\] & - & 1695 & - & - \\
\hline CH58 & 1940 & \[
\begin{aligned}
& 784 \\
& \text { to } \\
& 323
\end{aligned}
\] & 1490 & 862 & - \\
\hline DR15 & \[
\begin{aligned}
& 1578 \\
& \text { to } \\
& 1705
\end{aligned}
\] & - & 1352 & 843 & - \\
\hline
\end{tabular}

\section*{Measured Densities and Porosities for Atlantic Ocean Manganese Nodiles}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline NODULE SAMPLE ID & \[
\begin{gathered}
\text { WET } \\
\text { DENSITY } \\
\mathrm{g} / \mathrm{cm}^{3}
\end{gathered}
\] & \[
\begin{gathered}
\text { ORY } \\
\text { OENS ITY } \\
\mathrm{g} / \mathrm{cm}^{3} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { SOLID } \\
& \text { MATERIAL } \\
& \text { DENSITY } \\
& \mathrm{g} / \mathrm{cm}^{3} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
UET \\
MASS \\
9
\end{tabular} & \begin{tabular}{l}
DRY \\
MASS \\
g
\end{tabular} & \begin{tabular}{l} 
VOLUME \\
\(\mathrm{cm}^{3}\) \\
\hline
\end{tabular} & POROSITY \\
\hline Al & 2.07 & 1.59 & 3.04 & 355.6 & 273.2 & 172.2 & 47.8 \\
\hline A2 & 1.89 & 1.31 & 3.08 & 255.9 & 177.9 & 135.7 & 57.5 \\
\hline A3 & 1.97 & 1.45 & 3.03 & 276.8 & 203.7 & 140.3 & 52.1 \\
\hline A4 & 1.99 & 1.46 & 3.13 & 314.6 & 230.0 & 158.0 & 53.5 \\
\hline CH58 & 1.82 & 1.26 & 2.86 & 140.2 & 97.1 & 77.0 & 56.0 \\
\hline OR15 & 1.80 & 1.21 & 2.95 & 202.6 & 136.4 & 112.5 & 58.9 \\
\hline
\end{tabular}

\section*{Appendix 3}
data SOUKCES LIST AND dATA FOR SIZE DISTRIEUTION ANALYSIS

This appendix contains the sources of data uthiized for the size distribution analysis and for the spatial distribution analysis. Also inciuded, are data tabies whica present the discretized size distribution from each data source used to produce the histograms in Pigures 9 through 30. Lastiy, a table of average radius functions derived from eacn data source is includea.

Data source la, \(1 \mathrm{~b}, \mathrm{and}\) lc
Bottom photograph of Pacific nodule field obtained frow Deepsea Ventures, Inc. la refers to the entare photograph. ib and lc refer to contiguous portions taat make up la.

Data source 2
Bottom photograph of Pacific nodule field obtalned fron Deepsea Ventures. Inc.

Data sources 3 - \(\mathbf{b}\)
Physical characteristics tabjes of central Pacific nodule sites (DOMBS site C) compled by Fewkes et al. (1979). Data sources are tron canera run 1, frame numbers as follows:

3 SO. 264
4 No. 266
5 No. 269
6 No. 271
7 No. 273
8 Ali five frames combintà Note that the distance between adjacent franes (e.g. No. 264 to No. 265) is about 20 feet.

Data source 9

Physical cnaracteristics tables of central pacific
nodule sites (DUMES site A) compiled by
Fewkes et al. (1980) Data source 9 is a compination of data from capera \(x\) un \(1, f r a n e\) numpers 107, 170, 189, 232, 253, 349. 393,522 , and 538.

Data source 10

Physical characteristics tables of central Pacific nodule site (Domes sate A) conpiled by

Fewkes et al. (1900) - Data is from canerarua 3, fratie nupber 464.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{CROSS SECTIONAL AREA INTERVAL ( \(\mathrm{cm}^{2}\) )} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{NUMBER OF NODULES
FOR}} \\
\hline & & & \\
\hline & \multicolumn{3}{|c|}{DATA SOURCES} \\
\hline & 1c & \(1 b\) & 1a \\
\hline \(0-2.4\) & 3 & 5 & 8 \\
\hline \(2.4-4.9\) & 5 & 4 & 9 \\
\hline \(4.9-7.3\) & 7 & 11 & 18 \\
\hline 7.3-9.7 & 4 & 7 & 11 \\
\hline \(9.7-12.2\) & 7 & 12 & 19 \\
\hline 12.2-14.6 & 8 & 16 & 24 \\
\hline 14.6-17.0 & 10 & 12 & 22 \\
\hline 17.0-19.5 & 9 & 16 & 25 \\
\hline 19.5-21.9 & 11 & 19 & 30 \\
\hline 21.9-24.3 & 7 & 14 & 21 \\
\hline 24.3-26.8 & 8 & 8 & 16 \\
\hline 26.8-29.2 & 4 & 10 & 14 \\
\hline 29.2-31.6 & 10 & 13 & 23 \\
\hline \(31.5-34.1\) & 9 & 14 & 23 \\
\hline 34.1-36.5 & 8 & 14 & 22 \\
\hline 36.5-39.0 & 8 & 10 & 18 \\
\hline \(39.0-41.4\) & 3 & 4 & 7 \\
\hline 41.4-43.8 & 3 & 8 & 11 \\
\hline 43.8-46.3 & 3 & 12 & 15 \\
\hline 46.3-48.7 & 2 & 4 & 6 \\
\hline 48.7-51.1 & 1 & 6 & 7 \\
\hline 51.1-53.6 & & 3 & 6 \\
\hline 53.6-56.0 & , & 6 & 8 \\
\hline 56.0-58.4 & 0 & 4 & 4 \\
\hline 58.4-60.9 & 1 & 3 & 4 \\
\hline 60.9-63.3 & 1 & 1 & 2 \\
\hline 63.3-65.7 & 1 & 3 & 4 \\
\hline 65.7-68.2 & 0 & 2 & 2 \\
\hline 68.2-70.6 & 1 & 1 & 2 \\
\hline 70.6-73.0 & 1 & 1 & 2 \\
\hline \(73.0-75.5\) & 1 & 2 & 3 \\
\hline 75.5-77.9 & 0 & . & 1 \\
\hline 77.9-80.3 & 1 & 0 & 1 \\
\hline
\end{tabular}
Discretized Size Distribution Information for Data Source ?
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{cross} \\
\hline \multicolumn{2}{|l|}{SECTIONAL} \\
\hline AREA & NTMBER \\
\hline INTERVAL & OF \\
\hline \(\left(\mathrm{cm}^{2}\right)\) & NODULES \\
\hline \(0-0.6\) & 21 \\
\hline \(0.6-1.3\) & 35 \\
\hline \(1.3-1.9\) & 36 \\
\hline \(1.9-2.6\) & 37 \\
\hline \(2.6-3.2\) & 61 \\
\hline \(3.2-3.9\) & 46 \\
\hline \(3.9-4.5\) & 28 \\
\hline \(4.5-5.2\) & 28 \\
\hline 5.2-5.8 & 14 \\
\hline \(5.8-6.5\) & 12 \\
\hline \(6.5-7.1\) & 14 \\
\hline 7.1-7.7 & 6 \\
\hline 7.7 - 8.4 & 2 \\
\hline \(8.4-9.0\) & 3 \\
\hline \(9.0-9.7\) & 4 \\
\hline \(9.7-10.3\) & 1 \\
\hline 10.3-11.0 & 1 \\
\hline 11.0-11.6 & 0 \\
\hline 11.6-12.3 & 0 \\
\hline 12.3-12.9 & 1 \\
\hline 12.9-13.5 & 2 \\
\hline 13.5-14.2 & 0 \\
\hline 14.2-14.8 & 0 \\
\hline \(14.8-15.5\) & 1 \\
\hline
\end{tabular}

\section*{Discretized Size Distribution Information for Data Sources 3 through 8}


Discretized Size Distribution Information for Data Sources 3 through 8 (con't.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CROSS SECTIONAL AREA INTERVAL & \multicolumn{6}{|c|}{\begin{tabular}{l}
NUMBER OF NODULES FOR \\
Data sources
\end{tabular}} \\
\hline ( \(\mathrm{cm}^{2}\) ) & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \(30-31\) & 1 & 1 & 0 & 2 & & \\
\hline \(31-32\) & 0 & 1 & 2 & 2 & 0 & 4 \\
\hline \(32-33\) & 2 & 1 & 2 & 0 & 1 & 4 \\
\hline 33-34 & 0 & 1 & 0 & 0 & 0 & 3 \\
\hline 34-35 & 0 & 1 & 1 & 0 & 0 & 2 \\
\hline & \(\mathfrak{J}\) & 1 & 1 & 0 & 1 & 3 \\
\hline \(35-36\) & 0 & 0 & 2 & 0 & 1 & \\
\hline 36-37 & 2 & 0 & 0 & 0 & 1 & 3 \\
\hline 37-38 & 1 & 0 & 2 & 1 & 0 & 3 \\
\hline 38-39 & 0 & 0 & 1 & 1 & 0 & 4 \\
\hline 39-40 & 0 & 0 & 1
0 & & 1 & 2 \\
\hline & & & & & 0 & 0 \\
\hline 40-41 & 0 & 0 & 0 & & & \\
\hline 41-42 & 0 & 0 & 0 & & 0 & 0 \\
\hline 42-43 & 1 & 0 & O & & 0 & 0 \\
\hline 43-44 & 2 & 2 & 0 & & 0 & 2 \\
\hline \(44-45\) & 1 & 2 & 0 & & 0 & 4 \\
\hline 45-46 & I & & 0 & & & \\
\hline 46-47 & I & & 1 & & 0 & 1 \\
\hline 47-48 & & & 1 & & 0 & 2 \\
\hline 48-49 & & & 0 & & 0 & 0 \\
\hline 49-50 & & & 1 & & 2 & 3 \\
\hline & & & 1 & & & 1 \\
\hline
\end{tabular}

\section*{Discretized Size Distribution liformation for Data Source 9}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Cross} & \multicolumn{2}{|l|}{cross} \\
\hline SECTIONAI AREA & NUMBER & SECTIONAL AREA & NUMBER \\
\hline INTERVAL & OF & INTERVAL & OF \\
\hline \(\left(\mathrm{cm}^{2}\right)\) & NODULES & ( \(\mathrm{cm}^{2}\) ) & NODULES \\
\hline \(0-0.2\) & 0 & \(6.0-6.2\) & 1 \\
\hline 0.2-0.4 & 1 & \(6.2-6.4\) & 7 \\
\hline 0.4-0.6 & 2 & \(6.4-6.6\) & 7 \\
\hline 0.6-0.8 & 3 & 6.6-6.8 & 5 \\
\hline 0.8-1.0 & 4 & \(6.8-7.0\) & 5 \\
\hline 1.0-1.2 & 6 & \(7.0-7.2\) & 2 \\
\hline 1.2-1.4 & 4 & \(7.2-7.4\) & 2 \\
\hline \(1.4-1.6\) & 11 & \(7.4-7.6\) & 6 \\
\hline 1.6-1.8 & 3 & \(7.6-7.8\) & 1 \\
\hline 1.8-2.0 & 11 & \(7.8-8.0\) & 0 \\
\hline 2.0-2.2 & 10 & \(8.0-8.2\) & 0 \\
\hline 2.2-2.4 & 5 & \(8.2-8.4\) & 0 \\
\hline 2.4-2.6 & 6 & \(8.4-8.6\) & 0 \\
\hline 2.6-2.8 & 6 & \(8.5-8.8\) & 0 \\
\hline 2.8-3.0 & 11 & \(8.8-9.0\) & 0 \\
\hline 3.0-3.2 & 6 & \(9.0-9.2\) & 1 \\
\hline \(3.2-3.4\) & 5 & \(9.2-9.4\) & 1 \\
\hline \(3.4-3.6\) & 11 & 9.'t-9.6 & 1 \\
\hline \(3.6-3.8\) & 5 & \(9.6-9.8\) & 0 \\
\hline 3.8-4.0 & 13 & 9.8-10.0 & 1 \\
\hline \(4.0-4.2\) & 11 & 10.0-10.2 & 0 \\
\hline \(4.2-4.4\) & 9 & \(10.2-10.4\) & 0 \\
\hline 4.4-4.6 & 3 & 10.4-10.6 & 0 \\
\hline \(4.6-4.8\) & 5 & 10.6-10.8 & 0 \\
\hline 4.8-5.0 & 10 & 10.8-11.0 & 0 \\
\hline 5.0-5.2 & 7 & 11.0-11.2 & 1 \\
\hline 5.2-5.4 & 6 & & \\
\hline 5.4-5.6 & 8 & & \\
\hline 5.6-5.8 & 3 & & \\
\hline 5.8-6.0 & 7 & & \\
\hline
\end{tabular}

Discretized Size Distribution Information for Data Source 10
\begin{tabular}{cc}
\begin{tabular}{c} 
CROSS \\
SECTIONAL \\
AREA \\
INTERVAL \\
\((\mathrm{cm}\)
\end{tabular} & \\
\hline 0 - & NOMBER \\
0.5 & OF \\
\(0.5-1.0\) & 0 \\
\(1.0-1.5\) & 0 \\
\(1.5-2.0\) & 2 \\
\(2.0-2.5\) & 5 \\
\(2.5-3.0\) & 3 \\
\(3.0-3.5\) & 8 \\
\(3.5-4.0\) & 1 \\
\(4.0-4.5\) & 6 \\
\(4.5-5.0\) & 5 \\
\(5.0-5.5\) & 8 \\
\(5.5-6.0\) & 3 \\
\(6.0-6.5\) & 9 \\
\(6.5-7.0\) & 3 \\
\(7.0-7.5\) & 4 \\
\(7.5-8.0\) & 6 \\
\(8.0-8.5\) & 1 \\
\(8.5-9.0\) & 2 \\
\(9.0-9.5\) & 1 \\
\(9.5-10.0\) & 2 \\
\(10.0-10.5\) & 2 \\
\(10.5-11.0\) & 1 \\
\(11.0-11.5\) & 0 \\
\(11.5-12.0\) & 0 \\
\(12.0-12.5\) & 2 \\
\(12.5-13.0\) & 1 \\
\(13.0-13.5\) & 1 \\
\(13.5-14.0\) & 2 \\
\(14.0-14.5\) & \\
\hline
\end{tabular}

Measured Average Radjus Functions
\begin{tabular}{ccccc} 
DATA SOURCE & \(\overline{\mathbf{a}}(\mathrm{cm})\) & \(\overline{a^{2}}\left(\mathrm{~cm}^{2}\right)\) & \(\overline{\mathbf{a}^{3}}\left(\mathrm{~cm}^{3}\right)\) & \(\overline{a^{6}}\left(\mathrm{~cm}^{6}\right)\) \\
\(\mathbf{l a}\) & 2.9 & 9.3 & 31.7 & 1670 \\
lb & 3.0 & 9.6 & 32.9 & 1770 \\
lc & 2.8 & 8.8 & 29.5 & 1490 \\
\(2 *\) & 1.0 & 1.2 & 1.5 & 4.2 \\
3 & 2.6 & 7.1 & 21.4 & 730 \\
4 & 2.1 & 5.1 & 13.0 & 305 \\
5 & 2.6 & 7.4 & 22.2 & 750 \\
6 & 2.1 & 4.9 & 11.9 & 220 \\
7 & 2.2 & 5.2 & 13.6 & 350 \\
8 & 2.3 & 5.8 & 15.7 & 435 \\
9 & 1.1 & 1.3 & 1.6 & 4.0 \\
10 & 1.4 & 2.0 & 3.1 & 15
\end{tabular}
* unscaled daca

\section*{Appendix C}
data for spatial distributions in manganese monole fields
```

Radial Distribution Data for Figure 33
(Erom Data Source Ib)
Number of center nodules used - 31
Total number of nodules used - 247
Interval width equals one haif the average radius
Interval Number of Nodules
Number Distance to Center
1
0.0
2
3
4
5
6
7
8
9
10
18.8
13.7
11 21.0
12
19.1
13 20.8
14 19.3
15
16
21.1
17 19.2
18
19.6
19
20.0
2 0
21.0

```
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Radial Distribution Data For Figure 34 (from Data Source 2)} \\
\hline \multicolumn{4}{|l|}{Number of center nodules used - 40} \\
\hline \multicolumn{4}{|l|}{Total number of nodules used - 764} \\
\hline \multicolumn{4}{|l|}{Interval width equals one average radius} \\
\hline Interval & Number of Nodules & Interval & Number of Nodules \\
\hline Number & Distance to Center & Number & Distance to Center \\
\hline 1 & 0.0 & 26 & 48.6 \\
\hline 2 & 0.0 & 27 & 47.9 \\
\hline 3 & 0.0 & 28 & 44.7 \\
\hline 4 & 28.6 & 29 & 51.8 \\
\hline 5 & 53.3 & 30 & 50.7 \\
\hline 6 & 69.1 & 31 & 50.8 \\
\hline 7 & 45.4 & 32 & 46.8 \\
\hline 8 & 39.3 & 33 & 47.4 \\
\hline 9 & 43.5 & 34 & 50.6 \\
\hline 10 & 40.5 & 35 & 44.8 \\
\hline 11 & 61.0 & 36 & 51.7 \\
\hline 12 & 47.0 & 37 & 49.6 \\
\hline 13 & 36.8 & 38 & 45.6 \\
\hline 14 & 48.2 & 39 & 50.0 \\
\hline 15 & 53.1 & 40 & 48.9 \\
\hline 16 & 51.9 & 41 & 47.9 \\
\hline 17 & 46.7 & 42 & 48.3 \\
\hline 18 & 41.7 & 43 & 46.5 \\
\hline 19 & 48.1 & 44 & 50.9 \\
\hline 20 & 52.3 & & \\
\hline 21 & 55.4 & & \\
\hline 22 & 47.4 & & \\
\hline 23 & 46.0 & & \\
\hline 24 & 43.4 & & \\
\hline 25 & 55.5 & & \\
\hline
\end{tabular}

Clay. C. S. and H. Hedvin. 1977. Acoustical Oceanggraphy: principles and Applications, John wiley \(\varepsilon\) Sons, New York.

Davenport, W. B = and B. L. Root. 1958. Random Siynads and Noise. HeGraw-Hill Book Company, Inc. Hey York.

Fewkes, R. H., W. D. McParland, H. R. Reinhart and R. K. Sorem. 1979. Development of a Reljaple Method for Eyaluation of peep Sea Hanganese Nodule Deposits. Final Report. Contract No. G-0274013-mas, prepared tor united States Department of the Interior Bureau of Mines, by Department of beoiogy, Mashington State oniversıty.

Fewkes, R. R., W. D. McParland, W. G. Seinhart ard f. K. Sorem. 1980. Evaluation of getal resources at arid. Near Proposed Deep Sea rine Sites. Pinal Report. Grant No. G-284008-MAS, prepared for \(u\) nited States Department of the Interior Bureau of Mines, by Department of Geology, washington State university.

Poldy, L. L. 1945. The nultiple scattering of Waves', Phys. Eev. 67 (2), pp. 107-119.

Prazer, J. \(E\) 1977. manganese Nodule Feserves: An Updated Estinate", in Barine Gining, ed. Moore, J. K., Crane, Russak 8 Company, Inc., New York, Vol. I. p. 125.

Gladsby, G. P.(ed.). 1977. Barine Hanganese Deposits. Elsevier Oceanography Series 15. Ansterdam, p. 359.

Greenslate, J. 1977. 'Hanganese Concentration wet Density: A Marine Geochenistry Constant', in Mafine Mining, ed.
 Vol. I. P. 125.

Hong, K. M. 1980. *Multiple Scattering of Electromagnetic Haves by a Crowded Monolayer of Spheres: Application to
 821-826.
 Effective Pield in Dense Systems*, Phys-Hey. 85 (4), pp. 621-629.

Ma, Y. and A. H. Magnuson. 1981. Acoustic Scattering_fror a Single Manganes Module, Technical Report, Dept. of Aerospace and Ocean Engineering, virginia Polytechnic Institute and State University.

Magnuson, A. H. and K. Sundkist. 1979. Acoustic Soundzag for Manganese Nodules. MoAA Sea Grant Project Sunaary, Dept. of herospace and Ocean Engineering, Virginla Poiytechnac Institute and State Oniversity.
 "hcoustic Sounding for Manganese Nodules, Submitted to Offshore Technology Conference, may 1961, houston, TX. Dept. of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and state university.

McParland. T. D. 1980. Development of a Ketiable Method for Fesource Evaluation of Deep-Se Manganese Nodule Deposits Using Bot ton photographs. M.S. Thesis. Department of Geoiogy, hasinington State university.
Mizuno. A. and \(T\). Horitani. 1976. Manganese Nodule
Deposits of the Central Deposits of the Central Pacific Basin', in Horld Moning ang Metals Tecanology. Pp. 267-281.

Moritani, T. and F. Murakami. 1979. Meiation Between Manganese Nodule abundance and Acoustic Stratugraphy in the GH77-1 Area", Paper \(x \forall\), Cruise Report No. 12 "Deep Sea Mineral fesources Investigation in the Central Hestern Part of Central Pacific Fasin", Geological Suryey of Japan. Hisamoto. Takatsu-ku, Kawasaki-shi, Japan. pp. 218-221.

Speiss, \(P\). N. 1980. Ocean keate Acoustic Sensing of the Sea Ploor. In Yol. II of NOAA horkshop on Ocean Acoustic Remote Sensigg, Chairmen murphey, S. R - and M. Schulkin. NOAA Office of Sea Grant. Rockville, MD, pp. 11-1; 11-38.```

